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LIST OF SYMBOLS

In general, matrices are represented by capital
letters and vectors are underscored. The subscript on a
vector usually indicates the frame in which the vector is
expressed.

VARIABLES DESCRIPTION

b . Wing span
Gain scheduling coefficient

C1, Partial derivative of the non-
dimensional coefficient of
force or moment 1 with
respect to the nondimensional
variable 2. (scalar)

Mean aerodynamic chord
Gain scheduling coefficient
System matrix -

s = O O

Aerodynamic contact force vec-
tor

I

Vector-valued noilinear func-
tion

Control input matrix
¢ Thrust moment vector
Magnitude of g (g = |g|)

Gravitational acceleration
vector

Altitude (sralar)
Transfer function matrix

mx oo

e o}

[
Lol ]

Euler angle transformation from
Frame 1 axes to Frame 2 axes

Angular momentum vector

I
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VARIABLES DESCRIPTION

Rotational inertia matrix
I Identity matrix

Product or moment of inertia
(with appropriate subscripts)

J Cost functional

J State derivative premultiplying
matrix

K Gain (matrix)

Axis transformation matrix
for complete state vector

k Gain (scalar)

L Aerodynamic moment about the
x-axis (scalar)

Angular rate transformation
matrix

M Aerodynamic moment about the
y-axis (scalar)

Modal matrix composed of
eigenvectors

M Aerodynamic contact moment
vector

m Mass of the vehicle

Gain scheduling independent
variable

N Aerodynamic moment about the
z-axis (scalar)

Load factor
Riccati matrix
Pole of a system

Rotational rate about the body
x-axis

Weighting matrix

q Rotational rate about the
body y-axis

ls

N 2 4



et s

N

T Fiwrd W e,

¥
&
:

]i&;‘w:ﬁé“»vaw»m e o
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VARIABLES

q

(<4

1¢/]

£l o3 13 0

w

DESCRIPTION

Freezstream dynamic pressure
(3pVe)

Weighting matrix

Rotational rate about the body
Zz-axis

Reference area (usually wing
area)

Laplace transform variable
Thrust force magnitude (T=|T])
Thrust force vector

Time

Control vector

Body x-axis velocity compo-
nent

Element of control vector

Inertial velocity magnitude
(v={¥])

Velocity vector of body ob-
served from inertial axes

Body y-axis velocity compo-
nent

Body z-axis velocity compo-
nent

Aerodynamic force along the
X-axis (scalar)

State vector

Distance between actual c.g.
location and point used for
aerodynamic moment measure-
ments

Inertial position vector
Position along the x-axis
Element of state vector
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VARIABLES

.

N

VARIABLES (Greek)

a

DESCRIPTION

Aerodynamic force along the
y-axis

Norm.1 mode state vector
Output vector
Position along the y-axis

Aerodynamic force along the
Z-axis

Figenvector
Position along the z-axis
Zero of a transfer function

DESCRIPTION

Wind-body pitch Fuler angle
(Angle of Attack)

Negative of wind-body yaw
Euler angle (Sideslip angle)

Controllability test matrix

Inertial-velocity axis pitch
Euler angle (Flight path angle)

Aileron deflection
Flap/slat deflection
Horizontal tail deflection
Rudder deflection

Speed brake deflection
Thrust command

Damping ratio

Inertial-body pitch Euler
angle

Eigenvalue

Euler angle perturbation vector
expressed in an orthogonal frame

vig
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VARIABLES (Greek)

LIST OF SYMBOLS (Continued)

DESCRIPTION

p Relative density
Orientation or velocity magni-

- tude and orientation vector

£ Inertial~velocity axis yaw
Euler angle (Heading angle)

o} Air ¢« .usity
Correlation coefficient

c Real part of eigenvalue

¢ Inertial-body roll Euler angle

wz Inertial-body yaw Euler angle

Wy Fotational rate vector of Ref-
erence Frame 2 with respect to
Reference Frame 1 and expressed
in Frame 1 cogrdin es.
(wz—H2 wy SO wy is left-handed.
Thus, Frame 1 and Frame 2 are
not interchangeable.)

w Frequency (Imaginary part of
eigenvalue)

Wy Natural frejuency

VARIABLES (Subscripts or DESCRIPTION
Superscripts)

B Body axes

DR Pertaining to Dutch roll mode

dyn Stability axis derivative

F Final value

I Inertial axes
Initial value

1 Aerodynamic moment about the
X-axis

m Aerodynamic moment about the

y-axis
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LIST OF SYMBOLS (Ccntinucd)

VARIABLES (Subscripts or DESCRIPTION
Superscripts)
n Aerodynamic moment about the
Z-axis
roll Pertaining to roll mode
w Wind axes
X Aercodynamic force aiong the
X-axis
X Component along the x-axis
Y Aerodynamic force along fhe
) y-axis
y Component along the y-axis
Y/ Aerodynamic force ‘along the
z-aXis
4 Component along the z-axis .
PUNCTUATION
() Time derivative - occurs after

any transformation unless
explicitly indicated other-
wise

(") Matrix equivalent to vector
cross product. Specifically,
if x is the three-dimensional

vector
[ x
x=1v
| z
then
[ 0 -z y
X = z 0 -x
| -y X 0

the cross product of x and
another vector (F, for example)
is equal to the product of the
matrix X and the vector F.

x xF = XF

() Transpose of a vector or matrix
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PUNCTUATION (Continued) DESCRIPTION

5: (" Scheduled or estimated value
¥ ) Mean value

§ ()t - Inverse of a matrix

¥ ( )o Reference or nominal value of a
.g variable

H AC ) Perturbation about the nominal
% value of a variable

ACRONYM DEFINITION

' ARI Aileron-rudder-interconnect

N ARDP Acceleration response departure

parameter

v c.g. ' Center of gravity

: DPSAS Departure-prevention stability
v augmentation system

b 1AS ‘ Indicated air speed

; LCDP Lateral control departure

; parameter

!
f
&
Xv




48

e, AT A

STABILITY AND CONTROL
OF MANEUVERING HIGH-PERFORMANCE AIRCRAFT

Robert F. Stengel and Paul W. Berry
The Analytic Sciences Corporation

1. INTRODUCTION

1.1 BACKGROUND

As aircraft become capable of flying higher, faster,
and with more maneuverability, prevention of inadvertent
departure from controlled flight takes on added significance.
To some extent, the airframe can be designed to provide in-
herent protection against loss of control, as in the addition
of nose strakes to regulate high angle-of-attack (o) vortices;
however, performance objectives are likely to dominate the
choice of such features as wing planform and chord section,
nose shape, aircraft density ratic, and tail area. It is
likely, therefore, that the freedom to configure the aircraft
for intrinsic departure prevention will be restricted and
that the flight control system will be called upon to provide
additional protection.

Flight at high a invariably complicates the control
problem. Dynamic coupling between longitudinal and lateral-
directional motions becomes apparent, aerodynamic trends
vary considerably, and control surface effects diminish or
become adverse. Coupling and nonlinearities can cause a self-
sustained oscillation ("wing rock') at high o, degrading
precision tracking tasks without necessarily causing loss of
control. Abrupt maneuvering, external disturbances, control
system failure, or pilot error can produce a "departure"”
(pitch, yaw, or roll divergence), possibly leading to high
acceleration and to a fully developed spin. The recovery
from spin or gyration is, at best, an emergency procedure
which is not always successful. Clearly, it is preferable to
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prevent the departure before it occurs rather than to be
forced to take emergency measures.

Although departure and spin are related topics,
there are at least as many dissimilarities between the i
phenomena as there are similarities. Departure is a trans-

ient event, while spin is a quasi-steady condition. Depart-
ure connotes instability with respect to the initial flight
condition, while spin can be thought of as a bounded,
periodic (and therefore stable) moticn about a near-
equilibrium flight path. Departure can occur in level
flight, but spinning equilibrium ultimately results in ver-
tical motion of the aircraft's center of gravity.

Departure and spin both are beset by the difficul-
ties inherent in describing fully coupled dynamic systems
of bigh order and in describing static and rotary aero-
dynamics at complex flight conditions. However, as sug-
gested by the preceding comparison, the approximations and
assumptions which hold for one are anot necessarily appro-
priate for the other. 1In particular, it appears that line-
arized dynamic models may have a practical utility in pre- 7
venting departure which does not readily carry over to spin i

recovery. The reason is that a closed-loop control law
which continuously acts to prevent departure restricts
cagular excursions to small values; heance, their dynamic -
effects can be described by linear models. A spin recovery

strategy necessarily must operate with large angular changes

which result in significant nonlinear effects.

The key to developing a linear mcdel which is satis-
factory for the study and control of departure is iL the
recognition that the nominal fiight path, used as a refer-
ence for the variational (linearized) motions, need not
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path in dynamic equilibrium is equally satisfactory as long
as it is understood that variational motions are referenced
t» the continuously changing nominal flightoepath. The inter-
1rediate step of linearizing the aircraft model with non-zero
sut constant sideslip angle (BO), angular rate (po, LRy ro), 3
and load factor (nzO) provides the coupling between longi- :
tadinal and lateral-directional motions which is so import-

fnt in the study of departure.

It is essential to recognize that the combined
effects of non-zero mean motions lead to significant coup-
ling which otherwise might be missed in a linear dynamic
model. It has been demonstrated that large mean values of
roll rate and sideslip angle separately produce signifi-
cant coupling of the short period and Dutch roll modes. It
is less well known that the combined effects of these two
variables produce coupling which is qualitatively different
from that induced by a single variable. This variability
in stability effect is similar to.the seeming unpredict-
ability uv. the departure modes of some aircraft, in which
the aircraft is known to have more than one departure mode
for supposedly similar flight conditions. This also sug-
gests that departure modes are more predictable than might
have been assuwoned.

The complexity of the coupled dynamics and the
possiuility for misinterpreted control cues at high o indi-
ce*e a need for departure preventing control systems in
Lighly maneuverable aircraft. New developments are required
in characterizing the evolution of motions during extreme
maneuvering and in the computation of contiol solutionms.
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1.2 PURPOSE

The purpose of this investigation is to identify
general rules for the design of departure-preventing control
systems. I. achieving this objective, the analytic founda-
tions for linear-time~invariant modeling of aircraft dynam-
ics are extended to include extreme @aneuvering conditicns.
Using tools of linear systems analysis, the stability and
control characteristics of a high-performance aircraft are
examined over a wide range of flight conditions, and spe-
cific effects .of configurational modification are developed.
The study culminates in the development and evaluation of
control laws for a Departure-Prevention Stability Augmen-
tation System (DPSAS) using linear-optimal control theory.

1.3 SUMMARY OF RESULTS

The major tasks of this project were defined at
the outset as:

Dynamic Model Development
Characterization of Departure Modes
Controllability Effects on Aircraft Departure

Control Laws for Departure Prevention

These tasks can be summarized briefly as follows: Dynamic

Model Development provided a range of nonlinear and linear

dynamic models for use in the analysis of departure and the
design of DPSAS control laws. Characterization of Departure

Modes addressed the unaugmented stability of high-performance
aircraft. Controllability Effects on Aircraft Departure con-

sidered the direct (open-locp) effects of control forces on
aircraft departure. Control Laws for Departure Prevention

resulted in the design and simulation of linear-optimal



regulator control laws which stabilize the reference aircraft

during extreme maneuvering and which adapt to changing flight
coadition.

Although aircraft equations of motion are developed
in several texts, no derivatioa which retains all coupling
terms in the linearized equations of motion was found.
Therefore, the present investigation began with the develop-
ment of nonlinear equations in four axis systems (inertial
or earth-relative, velocity, wind, and body;. This was fol-
lowed by derivation of the associated linear equations of
motion, as well as equilibrium equations which define a
generalized trim condition. The validity of these equa-
.tions was established by direct comparisons of the time
responses of the linear and nonlinear equations.

A small, supersonic fighter aircraft was chosen as
a baseline for study. A comprehensive model of subsonic
nonlinear aerodynamic coefficients was available for this
aircraft and was used to generate aircraft local stability
derivatives as flight condition was varied. These sta-
bility derivatives formed a large part of the linear-time-
invariant dynamic model, which was analyzed by eigenvalue/
eigenvector, transfer function, and time response methods.
Thus, the significant aspects of aerodynamic nonlinearity
and inertial coupling, i.e., the local sensitivities to
initial condition, disturbance, and control perturbations,
were retained in the aircraft model.

Using the reference aircraft as a starting point,
the analysis proceeded along two separate lines. The first
approach was to assess the effects of maneuvers and flight
condition on the reference aircraft, recomputing the linear
model for each variation in nominal angle, angular rate,
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altitude, and velocity. 1In order to distinguish between
aerodynamic and purely inertiai effects, a limited number
of cases were evaluated with varying flight condition and
fixed aerodynamic derivatives. The second approach was

to vary individual coefficients of the linear model so that
specific configurational effects could be analyzed. The
quantitative results presented here strictly apply only to
the specific configurations studied; hence, care should be

exercised in generalizing these results to other configurations.

The linear-optimal regulator was applied to the
DPSAS design problem, and the present results demonstrate
the substantial benefits offered by the linear-optimal con-
trollers. A design procedure which also identifies gaiu-
scheduling relationships is presented; it has the following
features:

o Complete longitudinal/lateral-directional

coupling is accounted for in the design
process.

® All significant feedback gains, cross-
feeds, and con:rol interconnects are
identified.

® The control structure is guaranteed to
stabilize the aircraft, assuming that
aircraft parameters are known and
motions are measured precisely.

) Tradeoffs between control authority, con-
trol power, and aircraft iuotions are
incorporated in the design process.

' The DPSAS adapts to varying flight con-
dition.
The extension of this design procedure to 2 full command
augmenzation system is direct, as the control design algo-
rithms are easily restructured to consider handling quali -
ties requirements, control-actuator rate limits, noisy feed-

back measurements, and digital impiementation.

6
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In the process of conducting this investigation, a
flexible computer program (AIPHA) for the analysis of high
angle-of-attack stability and ccntrol ww.s developed. Pro-
gram ALPHA generates linear dynamic modeis and trim condi-
tions from nonlinear aerodynamic and inertial data; presents
results for body-axis, stability-axis, and reduced-order
models; computes eigenvalues, eigenvectors, transfer func-
tions, departure parameters, and linear-optimal control
gains; calculates time histories for various initial condi--
tions, control inputs, and disturbances; and incorporates a
logical (executive) structure which facilitates parameter
sweeps, initial condition variations, and model modifica-
tions during a single computer run.

1.4 ORGANIZATION OF THE REPORT

This report presents dynamic equations, stability
and control characteristics of high-performance aircraft,
and control laws for departure prevention. Prior results
related to extreme maneuvering of aircraft are reviewed in
Chapter 2, which then presents a validation of the linear
model and describes the effects of extreme maneuvering on
the dynamics of the reference aircraft. Configurationai
effects on maneuvering dynamics are discussed in Chapter 3.
Control laws for a Departure-Prevention Stability Augmen-
tation System (DPSAS) are derived in Chapter 4, and the
report is concluded by Chapter 5. Appendix A is directed

to the development of nonlinear equations of motion, linear
equations, generalized trim conditions, and tools for linear
systems anaiysis. The model for the reference aircraft is
summarized in Appendix B.



2. DYNAMIC CHARACTEFISTICS OF HIGH-PERFORMANCE AIRCRAFT

2.1 OVERVIEW

The problems associated with extreme maneuvering
have two common characteristics: loss of control and large
angles and/or angular rates, i.e., angles and rates gener-
ally beyond the range of normal, '"l-g'" flight operations.
Extreme maneuvering difficulties fall in the following
categories, which contain some overlap:

Post-stall gyrations
Incipient spin

] Decreased inherent stability

o Degraded handling qualities

) Longitudinal/lateral-directional coupling
° Stall

°® Wing rock

° Departure

°

°

°

Fully evolved spin

The ordering of this list suggests that the severity of
these phenomena increases with angle of attack and is
aggravated by angular rates and sideslip anyle.

Appendix A presents a formal development of fully
coupled linear-time-invariant models for aircraf! motion.
These models are suitable for investigating perturbation
motions which are referenced to large angles and large
angular rates. After reviewing prior investigations of

aircraft dynamics in Section 2.2, the remainder of the

chapter concerns the application of linear systems analysis
to the stability and control of a high-performance aircraft

P
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(which is described in Appendix BR). Section 2.3 compares the
time responses of linear and nonlinear dynamic models.
Section 2.4 is directed at aircraft stability, and Section
2.5 treats aircraft control. Variations in the aircraft's
dynamic characteristics during extreme maneuvering are
addressed in Section 2.6, which also introduces rudimentary
effects of tLe pilot's control actions while executing a
tracking task. The chapter is summarized in Section 2.7.

2.2 PRIOR STUDIES OF AIRCRAFT AT EXTREME FLIGHT CONDITIONS

Although published studies of aircraft dynamics
shortly followed the Wright bwrothers' flight (Ref. 1), i3nd
the concept of stability derivatives was published in 1913
(Ref. 2), the dynamics of aircraft which are executing
extreme maneuvers received little attention until the late
1940's. (Investigation of the related problem of aircraft
spinning had begun a decade earlier.) There are several
reasons for this, but the most significant reason is that
extreme maneuvers had not presented sufficient problems to
merit detailed engineering study. The advent of fighter
aircraft with higher speeds, higher roll rates, higher den-
sity, lower inherent damping, and higher cost accentuated
the importance of understanding extreme maneuvering dynamics.
Furthermore, the improved analytical tools and techniques
spawned by World War II became available for application to
flight dynamic problems.

In addition to the extensive flight testing which
high-performance aircraft received, three fundamentally dif-
ferent avenues have been followed in the investigation of
maneuvering flight. The first approach is the study of
rigid-body dynamics of the aircraft, the second is the study
of aerodynamics, and the third is the study of control. The
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first two areas have a cause-and-effect relationship -- aero-

dynamic forces modify the momentum and energy of the air-
plane -- and there is '""feedback," in the sense that the
changing velocity and attitude of the vehicle contribute to
changes in the aerodynamic forces. Although dynamic problems
result from the interaction of dynamics and aerodynamics, one
can distinguish between these two areas in reviewing past
work. The third area considers methods of augmenting the
natural aircraft stability, of limiting excursions from the

normal flight regime, of providing adequate response, and of

recovering from fully evolved spins.

2.2.1 Dynamics of the Aircraft

The objective of study is the solution of nonlinear

and linear equaticns of motion, e.g., those derived in Appen-

dix A. Options for analysic can be classified as explicit, in

which a direct solution of motion equations is sought, or

implicit, in which the evolution of motions is inferred from
characteristics of the system. The solution of these equa-

tions describes the aircraft's response to initial conditions

and disturbances, and it provides a basis for identifying con-

trol policies. The stability of the solution describes its

tendency to return to a nominal value. Given an initial dis-

turbance,

the stable aircraft's solution returns to the nominal

solution (or its error is, at least, bounded); the unstable

aircraft's solution diverges. These analytical methods can be

summarized as follows:

Explicit Analysis - Stability, Response, and Control

10

Analog integration of differential equations
Numerical integration of differential equations
Closed-form solution of differential equations

Equilibrium solution of algebraic equations
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Implicit Analysis - Stability

® Generalized energy balance (Liapunov method)

° Absolute stability bounds (Popov cri-
terion, circle criterion, etc.)

* Stability bounds of 'classical" dif-
ferential equations (Mathieu's equa-
tion, etc.)

® Eigenvalue analysis (Routh-Hurwitz
criterion, root locus, etc.)

) Quasi-linear Eigenvalue analysis

Implicit Analysis - Response and Control

) Eigenvector analysis

) Time-domain methods (Impulse or indicial
response, auto- and cross-correlation
functions, etc.)

® Transform methods (Frequency response, .
transfer functions, spectral density, etc.)

Applications of some df these techniques to the
maneuvering flight problem are documented in the litera-
ture. Much of the work related to handling gqualities, sta-
bility, coupling, and departurc is based upon linear-time-
invariant models and uses eigenvalue and transfer function
analysis. Work of this type is reported in Refs. 3 to 10.
In addition, parameiers of linear-time-invariant models
(CnB,dyn’ LCDP, etc.) have been corrz2lated with flight test
or piloted simulation data using liitle or no direct
analysis of the equations of motion (Refs. 11 to 14). Quasi-
linearircation of a significant sicdeslip nonlinearity is
applied to the wing rock problem in Ref. 15, and closed-form
solutions for a class of large maneuvers are presented in
Ref. 16. Since the early 196C's, a large number of investi-
gaticns have used analog and numerical integration in the

11
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study of departure, stall, post-stall gyrations a2und spin
(Refs. 17 to 27). Equilibrium solutions of nonlinear equa-
tions of motion have been used to determine spin conditions
and are discussed in Refs. 24 and 28 to 30.

A number of linear-time-invariant departure param-

eters have been identified, as reported in Refs. 5, 13, and
14. These parameters relate to transfer function numerators
and d-nominators and are expressed in terms of statility and
control derivatives (CnB’ ClB’ C“Ga’ Clﬁa' C“Gr' Clér)’
angle of attack (ao), moments of inertia (Ix, Iz), direc-
tional stability augmentation gain (kl)’ and ailerc.-rudder-
‘nterconnect (ARI) gain (kz): )

Directional Stability Parameter

1
C =C cosa. - =2 C, sin a (2.2-1)
nB,dyn n6 0 Ix 1B 0

Lateral Control Departure Parameter

LCDP = C - C a (2.2-2)

Cnsa ) Cnda
= - PR - =1)
LCDPA C . Cle Cl + ky Cl Clé Cné (2.2-3)
8a Sa r r
ARI Lateral Control Departure Parameter
Cn‘S +k2 Cné
_ _ a r _
LCDPARI = Cn C1 C KT (2.2-4)
B B\ "1 2 71
5a 6r

12
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Acceleration Response Departure Parameter ("8 plus §
Stability Indicator')

-1 CnBIx
ARDP_ = ag= tan (2.2-5)
B C1 1
8 zZ
[
ARDP6 = ag- tan \E—_ T— (2.2-6)

The first four criteria indicate resistance tc
departure when their magnitudes are greater than zero, while
the last requires ARDP8 to be greater than zero and greaier
than ARDPé. The first criterion relates to the open-loop
static stability of the Dutch roll mode; C“B,dyn > 0 is an
approximate requirement for stability. The LCDP's are approxi-
mations to the closed-loop static stability of the Dutch roll
mode when lateral control is used to maintain constant roll
rate; when they a1: greater than zero, the Dutch roll mode
is ..atically stable, but when they are less than zero, the
Dutch roll mode is statically unstable. The "B plus ¢§" cri-
terion is an attempt to combine stability and control con-

siderations in a single departure indicator.

There are a number of inadequacies in the above
parameters, although they provide insight for future develop-
ments. They are approximations to the exact transfer func-
tion coefficients and do not indicate actual pole-zero loca-
tions; they neglect dampirg terms entirely; and they do not
acccunt for longitudinal/lateral-directional coupling induced
by large sideslip angle (B) and angular rates ( p,q,r) --
in fact, the longitudinal dynamics are ignored completely.
References 8, 9, 31, and 32 introduce coupling effects due
to B, illustrating the importance of some of the neglected
terms, and Ref. 23 trea*s the dynamics of steady turning flight.

13
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2.2.2 Aerodynamics

Equally important developments have been made in the
area of aerodynamics. Measurements of forces and moments and

visualization of flow phenomena have indicated the large vari-
ations in aerodynamic conditions to be expected at high angles
of attack (a) and sideslip (B), and there is an increasing body
of dhta related to the effects of large angular rates (Refs.

34 to 46). While these several references cover a variety of
topics, they provide an introduction to the kinds of aero-
dynamic problems which can be expected when aircraft fly at
high angles and high rates.

The two dominant phenomena which complicate the
collection of valid data and the flight of actual aircraft
are vortices and separated flow. The vortex is a by-product

of aerodynamic 1ift, and each surface or body which generates
1lift has a corresponding vortex that trails downstream from
the lifting source. This swirling airflow affects pressure
distributions on the downstream surfaces of the aircraft, and
it can combine with vortices generated on other parts of the
aircraft to produce a very complex flow field. At low angles
of attack or sideslip, the vortices from nose, wing, and

tail usually form a unified flow field, which varies smoothly
as the aircraft's attitude with respect to the wind changes.
As the incidence increases, this smooth variation may break
down, causing the flow to become less unified.

The difficulties in predicting the actual forces
and moments on full-scale aircraft from wind-tunnel data
are greatest for large-angle flight conditions, not only
because tunnel correction factors can become significant
but because separation effects depend on the Reynolds num-
ber of the flow (and, therefore,on the size of the air-
craft). High-performance aircraft are most likely to perform

14
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extreme maneuvers at subsonic velocity, in which case Mach
number effects may not be significant; however, scaling of
the flow to provide representative Reynolds number is re-
quired, if model test data is to be applied to the full-scale
aircraft.

Stability problems associated with large aerodynamic
angles may arise from either the nose, wing, or tail, depend-
ing on aircraft configuration. Consequently, it is impossible
to identify a single aerodynamic solution to problems of
departure (other than to make all aircraft use the same con-
figuration). Aerodynamic solutions include wing-root leading-
edge extensions, nose strakes, redesign of the nose cross-
section and profile, maneuvering (leading-edge) flaps, and
adjustment of hcorizontal tail anhedral.

The aerodynamic forces and moments discussed above
are static, in that they arise from fixed values of a and B.
These terms establish the static stability and trim points
of the aircraft. Forces and moments which result from
angular rates (p,q,r) and accelerations (ﬁ,%,&,ﬁ,é,f) are
dynamic and thus contribute to damping and transient response.
There is indication that assumptions which cornventionally are
made for low-angle flight conditions, e.g., that the 8 and
yvaw-rate effects are simply additive, break down at high
angles. Unfortunately, dynamic forces and moments are dif-
ficult to measure in practice, and relatively few facilities
are equipped to mecasure dynamic forces, much less to separate
£ and r effects.

2.2.3 Control

The third subject for study is control of flight
motions during rapid maneuvering, and it is clear that the
emphasis of recent studies has shifted away from spin

15



recovery to departure and spin prevention. At best, spin

recovery is an emergency procedur=2, and it is not alwayc

successful. Safety is important, but it is not the only

issue: an aircraft which is prone to spin is less likely
to complete its mission successfully. It is preferable,

therefore, to prevent the spin before it occurs.

Nevertheless, if a spin occurs, it is important to
understand what control actions can be used to recover. The
most favored technique for recovery is to command ceonstant,
anti-spin control settings (Ref. 47). The proper control
settings depend on the type of spin (flat, steep, oscillatory,
or erratic) and on the aircraft configuration--particularly
the tail damping, aircraft density, and mass distribution.
In many cases. the available anti-spin control moment is
less than the restoring moments which maintain spin equi-
librium, i.e., the spin cannot be broken with constant con-
trol settings. The idea of "resonating' the aircraft out
of the spin by applying oscillatory controls was proposed as
early as 1931 (Ref. 48) and as recently as 1974 (Ref. 49).
While this task may be difficult for the pilot to execute,
simple logic for pulsing the controls automatically can be
designed.

The concept of automatic control systems which pre-
vent stall, departure, and spin has gained momentum, and
it is now recognized that departure prevention can be built
into the stability augmentation system (SAS), which vir-
tually all modern high-performance aircraft contain. The
basic approaches to departure prevention taken to date can
be classified as limiters (or inhibitors), stavility aug-

menters, control interconnects, or some combination of

these three. A dual-mode spin-prevention system is developed
in Ref. 50. This system applies constant antispin controls

16




when o and r exceed separate threshold values, then switches
to a rate-damping mode once the spin is neutralized. Ref-
erence 51 presents a departure-prevention system which

inhibits a, increases directional stiffness (by stability
augmentation), and restricts the aircraft to roll about its
flight path. A stall-inhibitor system for a variable-sweep
aircraft is described in Ref. 52. This system incorporates

an a limiter, «-dependen¢ command- and stability-augmentation
gains, ircreased directional stiffness and damping, and
ailercn-rudder interconnect. A similar philosophy is adopted
in Ref. 53, where speed stability also is augmented to account
for a-limiting effects in the landing approach. Departure pre-
vention considerations are evident in the designs for two
additional high-performance aircraft (Refs. 54 and 55), and

the effects of stability augmentation and roll/yaw interconnect
are demonstrated in Ref. 56.

While a common thread runs through the designs 12-
ported in Refs. 50 to 56, these reports suggest the need for a
unifying control theory to aid the design of future departure
prevention systems. These studies have made extensive use of
experience, nonlinear simulation, and flight testing to arrive
at successful designs, but the underlying concepts of stability,
response, and control remain to be identified.

Summary - This section has presented a brief survey
of prior developments related to maneuvering flight, dis-
tinguishing between investigations of dynamics, aerodynamics,
and control of the aircraft. It is shown that the range of
problems, from degraded handling qualities to fully evolved
spin, can not be completely solved by focusing on only one
area. New developments are required in characterizing the
evolution of motions; in the measurement and understanding

of forces and moments at extreme flight conditions; and in

17



the computation of control solutions. In following sections
of this report, the problems of dynamics and control are
addressed in detail.

2.3 COMPARISON OF RESULTS FROM LINEAR AND NONLINEAR
SIMULATIONS

The use of linear models in highly dynamic situa-
tions has been restricted, in the past, by a lack of linear
models which include complete dynamic effects and by the
lack of a general method of finding the proper nominal flight
condition. The linear models developed in Appendix A include
all the effects of a dynamic nominal flight condition. To
verify these models and to develop methods of using then,
this section presents a comparison of linear and nonlinear
results. The nonlinear results are in _he form of test tra-
jectories generated by a nonlinear aircraft simulation using

aerodynamic and mass data for the reference aircraft.

During the early part of this investigation, large
differences between the linear and nou.linear results appeared
along highly dynamic flight trajectories. These were traced
to the use of an incorrect nominal state vector. From these
observations, the concept of generalized trim (Section A.3.2)

was developed, and a method of finding generalized trim
points was derived. (Section A.3.2 describes the generalized
trim calculation computer program.)

The generalized trim condition is one in which the
derivatives of the velocity and angular rate states are as
close to zero as possible. Dimensionality considerations,
as discussed in Section A.3.2, lead to the conclusion that
the generalized trim problem involves six of the aircraft

18
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state equations, the correspouding six states, and six con-
trol parameters (in this case, four control settings ard two

Euler angles). The problem becomes a search for those values

of nominal body-axis velocities and angular rates that null
thn selected nominal state rates.

The following subsections examine specific results
of the comparison of linear and nonlinear trajectories to
support these points.

2.3.1 Elevator Control Input

Elevator deflection produces a change in pitch
moment, causing an immediate change in the aircraft angle
of attack. This causes the aircraft to climb or dive. 1In
combination with the throttle, elevator position establishes
the aircraft flight speed, angle of attack, and flight path
angle. The tests presented here involve small-amplitude
elevator inputs when the aircraft is in stra}ght—and—level
fligﬁt at slow speed and high angle of attack. Figure 2.3-1
illustrates the time history of the most important longi-
tudinal motion variables for eight seconds following the
control application. All lateral variables are approxi-
mately zero for the nonlinear model and exactly zero for the
linear model.

Comparison of the linear and nonlinear curves indi-
cates excellent agreement. It is important to note that the
nonlinear aircraft responsc¢ verifies that the lateral and
iongitudinal modes are truly uncoupled in this flight con-

dition. The nominal flight cond.tion is a steady-trim flight

condition and satisfies the generclized trim condition.

19
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Figure 2.3-1 Small Amplitude Elevator Input

2.3.2 Aileron Control Input

The ailerons primarily provide roll moment, and
the trajectories shown in Fig. 2.3-2 illustrate the air-
craft response to a small amplitude aileron doublet. The
linearized trajectory, whose nominal flight condition
is again straighkt-and-level flight, differs only slightly
from the true nonlinear response, and the linear and non-
linear trajectories exhibit lateral-longitudinal separation.

2.3.3 Rudder Control Input

Large-input, large-response trajiectories resulting
from rudder deflection are examined in this subsectiou, with
the goal of testing the trajectory matching capabilities of
a linear simulation for a highly dynamic flight condition.
The nonlinear test trajectory lasts eight seconds after the

20
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Figure 2.3-2 Small Amplitude Aileron Input

control is applied; linear trajectories starting at the
initial time and at four seconds into the trajectory are
tested.

Figure 2.3-3 compares the nonlinear trajectory to
a linear trajectory starting at the time of control appli-
cation. The nominal trajectory for linearization is the
6rigina1 static trim f£light condition of straight-and-level
flight. The trajectory match is acceptable for avout two
seconds, and the angle-of-attack plot illustrates the cause
of the deviation. Because it exhibits lateral-longitudinal
separation, the linear trajectory does not capture the change
in angle of attack that the nonlinear trajectory contains.
This change in angle of attack has a large effect on the

subsequent dynamics which the linear model fails to duplicate.
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By examining the trajectory beginning four seconds
after the control is applied, methods of linearization for
highly dynamic trajectories can be derived. Figure 2.3-4
illustrates an early attempt. Here, the point of lineariza-
tion is approximate, i.e., it does not satisfy the generalized
trim condition discussed below and in Appendix A. The re-
sulting linear trajectory diverges from the nonlinear tra-
jectory fairly quickly, and the slopes do not match at the
initial point for some states. Furthermore, the frequency
of the resulting motion is considerably different from that
of the nonlinear motion. Due to its dependence on ad hoc
estimation c¢f the nominal flight condition, the results of
this approach are highly variable in quality.

One of the most striking errors in the linear tra-
jectories shown in Fig. 2.3-4 is that the slopes of the
states do not match at the beginning of the linear trajec-
tory. This observation, which implies that the nominal
state rates are not zero, led to the development of the
generalized trim concept. In this context, this concept
indicates that to provide an accurate representation of a
nonlinear system by a linearized one, it is necessary to

choose a point of linearization that exhibits zero nominal

state rates.

Applying this generalized trim procedure to the
point four seconds after control application produces the
results shown in Fig. 2.3-5. Compared to the previous fig-
ure, the generalized trim procedure produces clearly superior
results. There are no initial slope errors evident, the
match is excellent for two seconds, and it is reasonably
close for much longer. Additionally, the frequency of the

linearized motions is close to that of the nonlinear
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trajectory. This, along with the amplitude match, supports
the use of a properly linearized model for the analysis of

a nonlinear vehicle along a highly dynamic trajectory. The
significance of this result is put in proper perspective
when it is realized that the vehicle has perform d a 360-deg
roll between t = 0 and t = 7.2 sec, and the pitch angle goes
from 15 deg to -45 deg from t = 0 to t = 5 sec.

It should be noted that the nominal! flight condi-
tion for linearization was found by an analytic method that
does not require the solution of a nonlinear trajectory
from which to estimate nominal values. The generalized trim
procedure is a useful method for calculating nom.nal flight

conditions even along highly dynamic trajectories.

Summary - These comparisons presented here establish
tnat nomiual flight conditions which satisfy the generalized
trim condition produce good trajectory matches and that the
corresponding linear models should provide accurate infor-
mation about the nonlinear system dynamics.

2.4 EFFECTS OF ANGULAR MOTION AND FLIGHT CONDITION ON
AIRCRAFT STABILITY

The effects of altitude and velocity variations,
angle-of-attack and sideslip angle variations, and steady
angular rates on aircraft stability are examined in this
section using the linearized dynamic models and eigenvalue/
eigenvector analysis technique presented 1n Appendix A. The
purpose of this aralysis is to show the effects of indivi-
dual flight variabkles, as well as .he combined effects of
flight variables which normally are zero in "l-g" straight-
and-level flight. For this study, the aircraft is trimmed
initially for "1-g'" flight at an angle of attack of 135 deg
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and at an altitude of 6100 m. As flight variables

change, the lcad factor may change accordingly; however,
the primary objective of this chapter is to isolate the
individual effects of each specific flight variable being
examined, so all other variables are held at their initial
values,

2.4.1 Altitude and Velocity Effects

Altitude affects the air density and, therefore, the
dynamic pressure. This causes the aerodynamic forces and
moments to be reduced, relative to the inertial effects,
as altitude increases, as shown in Fig. 2.4-1. Higher
altitude causes both the natural frequencies and damping ratios
of the Dutch roll and short period modes to decrease. The roll

mode also slows down as altitude increases.

Changes in velocity affect the dynamic pressure, as
well as the angular rate normalization terms (bk/2V and c/2V)
and the velocity-angular rate cross-product terms. These
changes cause significant increases in Dutch ro0ll and short
period trequencies as velocity increases (Fig. 2.4-1a). The
damping ratio of the short period mode is affected only
slightly by velocity changes over the range shown in Fig.
2.4-1b. The Dutch roll damping decreases as velocity
decreases, so that the Dutch roll is unstable at the lowest
velocities presented here. The reference aircraft's roll mode
(Fig. 2.4-1c) is changed only slightly as velocity varies,
contrary to the result obtained from the approximate lateral-

longitudinal equations discussed below.
Figure 2.4-1 indicates only small increase in

spiral mode speed and phugoid frequency and damping at
lower altitudes. Low velocity results in low phugoid
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damping, so much so that the mode is unstable over a signifi-

cant portion of the velocity range examined in Fig. 2.4-1.

As noted above, the lack of roll mode variation with
[ ]

velocity is contrary t¢ results obtained with accepted

approximations.

The expected linear change in roll mode with

velocity is deduced from approximate lateral-directional

equations, which can be derived by neglecting the roll angle

equation (and

H

therefore, the spira’ mode), by assuming that

the Dutch roll mode consists of wind-axis yawing motion, and

by assuming that the roll mode consists of wind-axis roll.

The approximations that result from these approximate lateral-

directional equations are

2

|-

A = p.V. S b° C (2.4-1)
roll 41x 00 lp,dyn
o, o % - BT eoVq S b2 c, (2.4-2)
’ A r,dyn
2 ~ 1 2
w = == p V. S b C (2.4-3)
n,DR ZIZ 00 nB,dyn
where xroll is the roll mode eigenvalue, CnB,dyn s defined
as in Eq. (2.2-1) and
C1 = coSs ag C1 + cos aq sin a, C1
p,dyn p T
. .2
+ (Ix/IZ><51n ag COS g Cnp + sina, Cnr>
(2.4-4)
Cn = cosza0 Cn - sin ao cos oy Cn
r,dyn -r P

+ (IZ/IX><-sin @y COS ag C1

+ sinza C
071
r. P

(2.4-5)
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Equations (2.4-1) and (2.4-2) predict values for
Aroll and C“n,DR as shown by the dotted lines in Fig. 2.4-1d
for the 6100-m case. The actual values, taken from Figs.
2.4-1b and ¢, are shown by solid lines on the same figure.
The approximate equations do a poor job of predicting mode
speed because the subject aircraft is fuselage-heavy (high
Iz/Ix ratio); hence, the Dutch roll contains more rolling
response than is assumed when deriving the approximate
equations. As can be seen from Fig. 2.4-1d, this leads to
a damping interchange such thag the roll mode is faster than
expected and the Dutch roll mode is more poorly damped than
predicted.

This examination leads to the following conclusions
for the reference aircraft:

° Higher altitudes result in lower damping
and frequency of the Dutch roll and short
period modes, as well as increased roll
mode time constant.

) Lower velocities result in a decrease in
short period frequency at constant damping
ratio, as well as decreased Dutch roll
frequency and damping.

° The approximate lateral-directional equa-
tions Jdo not predict roll mode or Dutch
roll damping accurately for the subject
aircraft. The complete equations should
be used for an accurate determination of
these parameters.

2.4.2 Aerodynamic Angle Effects

The aerodynamic angles, o and B, specify the orienta-
tion of the vehicle relative to the velocity vector, and, to a
large extent, they define the flow field around the vehicle.
For this reason, the aerodynamic angles are prime determi-
nants of the aerodynamic forces and moments. Consequently,
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significant differences in the speeds and shapes of the

normal modes occur as o, and 80 are varied.

0
Figure 2.4-2 illustrates the boundaries between

stability and instability which result from these variations.

These boundaries define the %y and BO for which the real

part of one or more eigenvalues migrates froum negative

{stable) to positive (unstable) sign (see Section A.4.1).

The phugoid mode is a zlow mode and is unstable at low Gq-

The Dutch roll mode, a fast mode, becomes unstable at high

o] The dashed line in Fig. 2.4-2 is an important boundary,

0"
indicating the transition of a relatively slowly divergent
phugoid oscillation into two real roots, one of which is
highly unstable. This transition line occurs at high BO -

about 10 to 15 deg.
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Figure 2.4-2 Effects of Aerodynamic Angles on

Aircraft Stability

The shape of the Dutch roll stability boundary
indicates that moderate values of nominal sideslip angle
(two to five deg) stabilize the mode. This is due to
lateral-longitudinal coupling; a close examination of the
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Dutch roll/short period eigenvalues indicates that, up to
about five deg of sideslip, Dutch roll damping increases as
short period damping decreases.

The eigenvectors of the linearized model provide
information about the normal mode shapes which indicate the
involvement of each state in each mode. Figure 2.4-3 illus-
trates some specific eigenvalue/eigenvector variations with
angle ol attack. Real eigenvectors, such as those associated
with the roll mode, are characterized only by the relative
magnitudes of each state, as the phase angles are either 0
or 180 deg. A time history of *his mode would show a con-
stant ratio between the various state amplitudes. These
amplitudes would evidence exponential decays with equal time
constants, given by the negative inverse of the eigenvalue.
Complex eigenvectors, such as those of the Dutch roll, are
characterized by the relative magnitudes of the involved
states and by the phase angle between them. A time history of
this oscillatory mode is generated by the projections of the
eigenvectors on the real axis as the entire eigenvector set
rotates with angular rate given by the imaginary part of
the eigenvalue. The magnitudes decay exponentially with the
time constant given by the negative inverse of the eigen-
value's real part.

Despite the large changes in eigenvalues with angle
of attack, Fig. 2.4-3 shows little corresponding change in
eigenvector shape. The only major changes involve the pro-
portions of angular rates in the fast modes, and these changes
are due to mode speed variations, as described above for the
roll mode. The short period mode contains increased pitch

rate at large a, for this reason; in the Dutch roll

0
eigenvector, the roll rate-to~-sideslip ratio increases and

decreases with the Dutch roll frequency. Overall, the Dutch
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roll mode of this aircraft involves a great deal of rolling
motion, underlining the low rolling inertia typical of modern
fighters.

o eSO ot

The short period eigenvector shows that this oscil-
lation typically involves angle-of-attack perturbations at
constant velocity, as axial and normal velocity perturbations
are approximately 180 deg out of phase with each other and
are related in magnitude by tan aq- The short period mode
is faster at high angle of attack, and it includes more pitch
rate than at low angle of attack.

A By

The changes in specific eigenvalues and eigenvectors
with sideslip angle are illustrated in Fig. 2.4-4. Lateral-
longitudinal coupling is quite prominent for the asymmetric
flight conditions portrayed in this figure. Modes of com-
paravle speed couple most readily. Roll angle response is
found in the phugoid mode., and pitch angle becomes a component
of the spiral mode, so that both modes involve slow roll-pitch
motion. Angle of attack appears in the Dutch roll eigenvector,
and a roll-sideslip combination becomes important in the short
period mode, so that both modes involve an angle of attack-
sideslip oscillation. In both cases, Aw and Av (or, equivalen-~
tly, Ao and AB) are almost 180 deg out of phase. Note that
the changes in the speeds of these modes are small and gradual
as the sideslip angle is varied.

To demonstrate some of the causes of aerodynamic
angle effects observed above, the aerodynamic coefficients
are held constant (at the values for ag = 15 deg and Bg =
0 deg), and the body orientation with respect to the velocity
vector is varied over the same range of aerodynamic angles
used in Fig. 2.4-2. The results, shown in Fig. 2.4-5, differ
significantly from those shown in Fig. 2.4-2. There is only
a slizht sideslip effect. The Dutch roll mode, rather than
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Figure 2.4-5 Effects of Body Orientation on
Aircraft Stability

becoming unstable at high Y is destabilized by lower ag-
The phugoid stability boundary near agp = 12 deg is roughly

similar to that found in Fig. 2.4-2, indicating that the lack

of phugoid stability in this area is not due to aerodynamic
variations.

Figure 2.4-6 assists in the evaluation of the high
angle-of-attack Dutch roll instahility. This figure com-
pares the Dutch roll eigenvalue to the departure parameter
CnB,dyn (see Section 2.2) and to Cnr and cnr,dyn’ the last
of which is defined in Eq. (2.4-5).

The results of Fig. 2.4-6 indicate that, at least
in this case, C“B,dyn is a good indicator of the Dutch roll
mode's imaginary part. Neither Cnr nor C“r,dyn provide a
particularly useful indication of Dutch roll stability.
This example indicates that C“B,dyn has only limited value
as a departure parameter. For this aircraft, Dutch roll
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Figure 2.4-6 Variations of Directional Aerodynamic.

Coefficients with Angle of Attack

instability is due to negative damping, and CnB'dyn is in-
adequate as a predictor of departure.

made:

I AP U 305

The following conclusions concerning aerodynamic
angle effects on stability of the reference aircraft can be

The Dutch roll mode becomes unstable due
to negative damping at high ag. This is
caused by changes in the aerodynamics as
ap increases.

Mean angle of attack variations have sig-
nificant effect on the eigenvalues, but
mode shape (eigenvector) changes are
srall relative to other effects.

Mean sideslip angle introduces lateral-
longitudinal coupling; therefore it

has a large effect on the mode shapes
(eigenvectors), without causing large
changes in the eigenvalues. This lateral-
longitudinal coupling primarily occurs
between modes of similar speed and can
lead to a transfer of damping, as in the
situation where small sideslip angles
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stabilize the Dutch roll mode at the
expense of short period damping.
® The parameter C“B dyn gives a good indi-

cation of Dutch roll frequency, but it
is not useful as a departure parameter
for the subject aircraft.

2.4.3 Angular Rate Effects

Non-z=2ro nominal angular rates have two effects on
the linearized aircraft uynamics. The first, an aerodynamic
effect, results in a change in the nominal forces and moments
due to the steady angular rates. The second is dynamic, and
it is due to the cross product of angular rate with velocity
(in the force equations) and with angular momentum (in the
moment equations). The specific terms involved (for Ixz = 0)
are given in Table 2.4-1. A close examination reveals that
mean pitch angular rate, 99 enters both the lateral and
longitudinal equations but does not affect lateral-longitu-
dinal coupling terms. Mean roll and yaw rates, Py and Ty
enter as lateral-longitudinal coupling terms. Steady roll-
rate capability of most high-performance aircraft is much
higher than pitch- or yaw-rate capability, so roll-rate
effects are especially important.

Stability boundaries as functions of pitch rate and
yaw rate are illustrated in Fig. 2.4-7. The destabilizing
influence of q is the major effect, and it has an especially
severe effect on the Dutch roll mode. Yaw rate has a mild
stabilizing effect on the Dutch roll and spiral modes. This
is due partially to lateral-longitudinal coupling, because
short period and phugoid damping decrease as Dutch roll damping
increases.

38
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TABLE 2.4-1

DYNAMIC EFFECTS OF STEADY ANGULAR RATE

Figure 2.4-7

Angular Rate | Multiplied By | Enters Term
pe ey
Po (I-1x)/1y 3q/dr
Po -1 aw/ v
Po 1 v/ aw
Po (Ix=Iy)/1Ig 3% /3q
90 -1 du/ow
9 1 aw/3u
90 (Ix=1y)/14 ar/op
9 (Iy-12)/1x ap/ar
o 1 au/av
To (Iz-Ix)/1y aq/3p
To -1 av/du
To (Iy-12)/1x ap/aq
[ZZ3 DUTCH ROLL STABLE
EXN] PHUGOID STABLE
2

3 PHUGOID STABLE

® DUTCH ROLL STABLE

ol

510 / DUTCH ROLL @AL UNSTABLE

- AND

g PHUGOID

3 UNSTABLE

S SPIRAL UNSTABLE

0 10 20 30
PITCH RATE, q, (dag/sec)

Yaw-Rate/Pitch-Rate Effects (00-15 deg)
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The eigenvector changes that accompany increases in
q, are shown in Fig. 2.4-8. Steady pitch rate does not
introduce lateral-longitudinal coupling, but sowe changes in
mode shapes appear in the roll mode and in the separation
of the complex phugoid mode into two real roots. Both fre-
quencies and damping ratios of the Dutch roll and short
period modes change, but changes in the mode shape are minor.

Steady roll rate is important because fighter air-
craft are capable of hipl. Py and air combat maneuvers often
include such motions. For the aircraft to roll with con-
stant aerodynamic angles, the roll rate must occur about the
wind x-axis (which is the same as the stability x-axis for
constant nominal aerodynamic angles). Sideslip variations
also are considered, since piloting error can easily result
in non-zero BO during a rolling maneuver. Both positive and
negative Py are considered, to account for roll "into" or
"out of" the sideslip.

The stability boundaries that result from combined

-~

ro.”. rate and sideslip are shown in Fig. 2.4-9. These
boundaries indicate that Pg has only a small effect on the
fast modes, primarily the Dutch roll mode. The combination
of Po and small values of 80 of opposite sign serves to
destabilize the Dutch roll mode. Roll rate destabilizes

the phugoid mode in general, but there is a combination of
BO and Pg that maintains phugoid stability. High Bo results

in a fast divergence for all values of p,. tested.

0
Eigenvecteor variations due to steady rolling are
illustratzd in Fig. 2.4-10. Eigenvalue changes are signi-
ficant, considering the angular rates involved. The mode
shapes also change, so that lateral-longitudinal coupling
is impertant. Large roll-rate/sideslip perturbations in
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Figure 2.4-9 Stability Boundaries for Sideslip/
Roll-Rate Variations (a0==15 deg)

the short period mode and large angle of attack perturba-
tions in Dutch roll mode are examples of this coupling.

Conclusions about steady angular rate effects are
as follows:

Mean yaw rate and roll rate cause
lateral-longitudinal coupling and
therefore change the mode shapes
significantly. BRoll rate is by far
the more significant because of the
large values it can exhibit.

Mean pitch rate changes the speeds of
the normal modes without affecting

their shapes significantly. Even low
values of dp (about 5 deg/sec) can cause
the Dutch roll mode to be unstable.
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2.5 EFFECTS OF ANGULAR MOTION AND FLIGHT CONDITION
ON AIRCRAFT CONTROL

The transfer function provides a primary measure
of the quality of aircraft control, as it is the Laplace
transform of the ratio between a specific output and a spe-
cific input (Appendix A). The transfer function gain, KF’
is the stady-state value of the transfer function after all
transients damp out, assuming that all transients are stable.
The transfer function gain, KI, is (for most aircraft), the
initial state rate response to a transfer function's control
step. The poles of the transfer function are the eigenvalues
of the unforced system, as described in Appendix A.

The zeros affect the magnitudes of excitation of
the normal modes, which are related to the distance hetween
the zeros and the appropriate eigenvalues in the s plane.
In the limiting case, a zero and pole in the same location
cancel, and the. corresponding mode does not appear in that
response. Zeros located in the right half-plane are called
nonminimum-phase zeros (due to their effects on the phase-

shift of sinusoidal inputs), and they have major impact on
the aircraft's transient response and on controller design.
For example, an undesirable reversal in the initial res-
ponse is caused by such zeros, as illustrated in Fig. 2.5-1.

The nonminimum-phase type of response is undesirable
because it makes closed-loop control difficult. The pilot
can be misled by this type of response, as the magnitude and
sign of the motion are uncertain. Addition of a high-gain
feedback loop around a transfer function that exhibits non-
minimum-phase properties can result in instability of the
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Finally, this type of response

can make it impossible to implement some simple forms of

adaptive control, as they can suffer from instability for

an analogous reason (Ref.

57).

2.5.1 Velocity and Aerodynamic Angle Effects

As has been observed previously (Section 2.4.1),

velocity changes the dynamic pressure, which affects the
control effectiveness. Table 2.5-1 illustrates some typical
values of the transfer function gain, K at different speeds,

and the variation is as expected.

Fl
Altitude also affects

dynamic pressure in that increasing altitude decreases

-atmospheric density; hence, dynamic pressure decreases.
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TABLE 2.5-1
VELOCITY EFFECTS ON TRANSFER FUNCTION GAIN, K

F
Velocity Aw/AGh Ap/AcSa Ar/AGa
= |
70 m/s -3.88 -0.50 -4.04
94 m/s -5.17 -0.66 -5.39
117 m/s -6.47 -0.83 -6.74

Aerodynamic angle variations can cause large changes
in the system eigenvalues and can be expected to have sig-
nificant effects on the numerator of the transfer function as
well. Table 2.5-2 illustrates variations in KI and KF as
@, and BO vary. (See Section A.4.3 for the definition of KI.)
The invariability of KI with sideslip indicates that the
control effectiveness does no! depend on sideslip. This is
a function of the aerodynamic data used here (Appendix B),
as the data does not model the effects of BO on control
effectiveness. The steady-state gain, KF, shows a large
dependence on sideslip because this gain depends on the pole
and zero locations, which themselves vary with BO.

The sign changes in KF (at small ao) as 60 varies
are due to changes in the number of unstable poles and non-
minimum-phase zeros. From Eq. (2.5-6), it can be seen that
such a change results in a KF sign change if the sign of KI
remains the same.

One of the major effects of angle-of-attack varia-

tions (best seen in the KI gain of the Apﬂhsa transfer
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TABLE 2.5-2
AERODYNAMIC ANGLE EFFECTS ON TRANSFER FUNCTION GAINS (V0=94HVS)

Kp Ky
a(deg) | A (deg) Aw/Aéh Av/AGa Ar/AG‘ tﬁ.p/t\éa Av/Asr Ar/Adr Ap/Mr Aw/AGh Ap/A6n Ar/AGr
5.0 0.0 ~1.04 2.46 18.39 | -4.91 -0.95 -7.11 1.90 -0.10 2.88 -0.53
5.0 10.0 0.33 -3.86 | «32.02 8.64 0.37 3.04 [-0.82 -0.10 2.98 -0.53'
15.0 0.0 -1.38 0.41 2.47 | ~-0.66 -0.89 -5.39 1.44 -0.14 1.1 -0.57
15.0 10.0 -2.37 1.43 9.88 | -2.64 -1.7M -11.85 3.7 -0.14 1.7 ~0.57
25.0 0.0 -0.84 0.03 0.48{ -0 13 -0.27 -4.29 1.15 -0.11 -0.001 1 ~0.44
25.0 10.0 -1.50 0.01 0.42 | =0.11 -0.C5 -3.83 1.02 -0.11 =0.001 | -0.44 l

function)is the loss of aileron roll control at high ay- This
loss of aileron roll effectiveness, combined with the continued
effectiveness of the rudder for roll and yaw control, leads

to the conclusion that this aircraft is rolled more

effectively with the rudder at high angles of attack.

An examination of the transfer function zeros
(Table 2.5-3) indicates that nonminimum-phase zeros are
gquite prevalent, although often accompanied by right-half-
plane poles, i.e., they often occur in unstable systems.
Right-half-plane zeros are important in control system
design because closed-loop poles of a system with a simple
loop closure migrate from the open-1lo0op poles to the zeros
as the loop gain is increased. Therefore, in a system with
right-half-plane zeros, too high a gain may result in an

unstable closed-loop system.

When BO is not zero, there is mode coupling, and
a control input excites all modes. This is indicated by
Table 2.5-4, which presents the poles and zeros of three

transfer functions at a flight condition where BO is non-
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TABLE 2.5-3
EFFECTS OF ANGLE OF ATTACK ON TRANSFER FUNCTION ZEROS

Traansfer
Function | ®o(de€) Zeros
m
A'/Aﬁh 8 0.0084 j 0.0824 -35.89*
15 -0.0025 :j 0.1187 -21.07
25 -0.0281 t3 0.1500 -25.56
AV/AG‘ 8 -0.168 -1.465 86.43
15 «0.137 -0.512 1328.0
. 25 -0.184 0.178 133.7»
Ar/AG‘ S 0.350 3 2.914 -1.08
15 2.08 tj 9.63 -0.388%
25 0.036 =3 1.72% «0.237*
AP/AG‘ . -0.141 23 1.399 0.0270
18 -0.152 1.298 0.0278
25 «13.687 22.49 0.0300*
AV/AGr L) 0.7198 -0.840 -40,97
15 0.0956 -0.393 -45.74
25 0.0798 -0.188 -41.70°*
Ar/AGr S 0.0386 :j 0.886 -0.916
13 -0.025 =3 1.720 -0.391
25 0.023 =j 1.624 «0.238*
AP/&Gr ) 0.027 -1.80 1.79
1% 0.028 -2.98 3.5
25 0.030 -2.66 3.05+

sAccompanied by right-half-plane poles

TABLE 2.5-4
POLE-ZERO COMPARISON AT ag= 15 DEG, BO =10 DEG
Poles
Short Period Dutch Roll Roll Spiral Phugotid

-0.461 t3 0.918 -0.0685 £j 1,933 -0.390 -0.0368 -0.0227 =5 0.183

Zeros of A'/Aél
-30.78 -0.0028 23 2.032 -0.4238 -0.033 +0.0009 =J 0.114

Zeros of Arldﬁl;
-0.503 23 1.001 0.153 3 1.301 -0.3901 «0.023139 23 0.147

Zeros of Ap/ACi

-0.449 2J 1,181 -0.121 23 1.272 0.038 ~0.0304 3 0.142

48

P

e RN, \,



zero. Note that the lateral mode poles are not canceled in
Aw/AGh and that the longitudinal mode poles are not canceled
in the Ar/AGr and Ap/AGa transfer functions.

The effects of velocity and aerodynamic angles on
control of the example aircraft can be summarized as follows:

° Lower velocities lead to decreased control
effectiveness, as demonstrated by transfer
function gains.

° Non-zero Bgp does not affect Ky, but does
change the poles and zeros so that all
modes are excited.

° Mean angle of attack leads to significant
changes in control effectiveness, so much
so that the rudder is more efficient than
the aileron for producing roll at high
angles of attack.

® Nonminimum-phase zeros are prevalent in

the aircraft transfer functions at increased
angle of attack.

2.5.2 Angular Rate Effects

Although no explicit effects of nominal angular
rates on the control effectiveness are included in the
specific aerodynamic data used here, angular rates cause
significant changes in the transfer functions due to pole
and zero shifts. This is apparent in Table 2.5-5, which
shows changes in transfer function gains due to nominal
pitch rate. The initial value of the transfer function, KI’
does not vary with q, because KI depends only on the con-
trol effectiveness. The steady-state gain, KF’ does vary
with Qg because of the pole and zero variations. As above,
sign variations in KF indicate the appearance of unequal

numbers of nonminimum-phase zeros and right half-plane poles.
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TABLE 2.5-5
EFFECTS OF PITCH RATE ON TRANSFER FUNCTION GAINS (uo=15deg)

F Xy
q(deg/sec) Av/Ash Av/AG‘ Ar/.‘.éa Ap/Ada Av/Mr ar/aé, lAp/A&r Aw/Aéh Lr/n&r Ap/t\éu

[} -1.38 | 0.41 2.47 | -0.66 |-0.89 -5.39 1.44 =0.14 -0.58 1.71
12 -5.67 | -0.02 |-2.61 2.44 0.04 5.68 -5.32 | ~0.14 -0.57 .n
24 | -2.51 [ 0.17 [-0.39 0.72 |-0.37 0.84 1.56 -0.14 -0.57 1.71

Mean wind-axis roll rate, like BO’ has no effect on
control power but does change the mode shapes significantly.
The steady-state transfer function gain varies with Py as
shown in Table 2.5-6. This variation is fairly smooth, com-
pared to the effects of CRY and the only sign changes are
in the roll-rate transfer functions. Because non-zero roll
rate creates lateral-longitudinal coupling, any control dis-

placement excites all of the normal modes.

TABLE 2.5-6
EFFECTS OF RCLL RATE ON TRANSFER FUNCTION GAIN, KF (ao=15 deg)

ToZ248

pwo(deg/sec) Aw/AGh Av/A6a Ar/aé, Ap/Aéa Av/AGr Ar/'A6r Ap/AGr
0 ~1.58 0.41 2.47 -0.66 ~0.89 -5.39 1.44

15 -1.64 0.24 0.69 -0.11 -0.52 -1.49 0.23

30 -1.40 0.22 0.32 0.06 -0.51 ~0.73 -0.13

45 -1.25 0.22 0.18 0.10 -0.62 ~0.51 -0.29

60 -1.23 0.22 0.10 1 0.04 -1.34 -0.62 ~0.27

Conclusions about angular rate effects on the con-
trollability of the subject aircraft are as follows:

) Non-zero nominal angular rates do not
change control effectiveness, but do
change mode shapes and/or speeds, as
well as zero locations.



°® Nominal qp has a large effect on Ky,
primarily due to the creation of non-
minimum-phase zeros and unstable modes.

° Nominal pg primarily changes mode
shapes rather than pole locations,
- and it causes any control de-
flection to excite all response
modes.

2.6 DYNAMIC VARIATIONS DURING EXTREME MANEUVERING

Aircraft may be especially prone to departure from
controlled flight during air combat maneuvering because such
maneuvers are executed using the highest possible aircraft
performance, and pilot workload during maneuvering flight is
high. Although it is possible to fly most combat maneuvers
in a smooth, coordinated manner, even small errors can cause
difficulty due to instability, unfamiliar coupled mode shapes,
or changes in control effectiveness.

Many air combat maneuvers include periods of high
angle-of-attack flighc, in order to produce a large normal
force for climbing or turning. High angular rates also are
typical of many air combat maneuvers. High normal accelera-
tion may be accompanied by large g and large Py may be
generated to rapidly orient the lift force in a desired
direction.

Referring to the earlier sections in this chapter,
the difficulties involved in extreme maneuvering become
clear. High angles of attack and pitch rate destabilize the
normal modes of motion and reduce the available control
power, while high roll rate causes lateral-longitudinal

coupling and produces mode shapes unfamiliar to the pilot.
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The first two of the following sections examine the
changes in aircraft stability and control along two typical
alr combat trajectorie The third section approuaches the

same problem from a different viewpoint, examining the effects

of an elementary target-tracking pilot model on aircraft
stability.

2.6.1 Wind-Up Turn

In a wind-up turn, the aircraft is rolled and high
load factor is commanded, resulting in a high pitch rate. As
airspeed bleeds cff (which may occur even at maximum thrust),
angle of attack is increased, and the aircraft stability
decreases. Five pcints taken from a typical wind-up turn
time history are described in Table 2.6-1, and the corre-
sponding eigenvalues are given in Table 2.6-2. Of special
interest is the Dutch roll damping, which decreases so that
the Dutch roll mode becomes unstable as the wind-up turn
progresses. These are not symmetric flight conditions, so
it is expected that the Dutch roll eigenvector also con-
tains angle-of-attack prrturbations.

In addition to lateral-longitudinal coupling and the
general reduction in damping, the control effectiveness also
decreases, as illustrated by the initial value of the trans-
fer function, shown in Table 2.6-3. It is necessary for the
pilot to use rudder as the roll control at high angles of
attack, and this can cause sideslip perturbations, which cana

lead to further problems,

These representative points from a wind-up turn
demonstrate the deterioration of the stability and contrcl
of the example aircraft as it executes one ferm of air

combat maneuver.
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TABLE 2.6-1
WIND-UP TURN WORKING POINTS /
Working
Point Description Flight Condition
= ——
1 Roll and Turn V0 = 217 /v ag = 5 deg
t = 0 sec Py = S5 deg/sec Ty = 5 deg/sec
@O = 45 deg 90 = 5 deg
2 Rapid Turn VO = 217 mfs ag = 11 deg
t = 13 sec a5 = 10 deg/sec Iy = S deg/sec
¢, = 85 deg e, = -15 deg :
3 Turning Vo = 177 o0 ag = 15 deg
T = 30 sec Q, = 10 deg/sec I, = 5 deg/sec
@0 = 70 deg 80 = -20 deg
4 Turning VO = 144 vy ag = 22 deg
t = 52 sec Py = 10 deg/sec qo = 15 deg/sec
rO = 10 deg/sec
¢0 = 70 deg 60 = -20 deg
5 Turning VO = 116 r's a, = 27 deg
AV
t = 75 sec Py = 12.5 dey/sec Qy = 12.5 deg/sec
¢0 = €0 deg 60 = -25 deg
7
TABLE 2.6-2
WIND-UP TURN EIGENVALULS
Working
Point Short Period Dutch Roll Roull Spiral Phugoid
1 -0.935:31 76 -0.383:233.43 -1 61 0.064 -0.051+30.126
2 -0.952+32.19 -0.302+34.37 -1.04 -0.043 0.002+30.191
3 -0.777231.74 -0.181+34.04 -0.82¢ -0.074 -0 012:)0.209
4 -0.456+32 .66 0.0766+33 26 -0 758 -0.0%¢ -0.035230.327
5 -0.438232.16 0.213:)2.55 -0 543 -0.154 -0.057130.214

~~
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TABLE 2.6-3

TRANSFER FUNCTION GAIN, KI, ALONG THE WIND-UP TURN
Workiog | /a4 8p/As 8p/aé 8r/46 AT/A6 av/s8 av/ 86 '
Point h a r a r a by

1 <0.42 15.80 3.80 0.321 -2.87 -0.018 0.127

2 -0.49 12.12 3.45 0.095 -2.91 -0.011 0.151

3 -0.49 5.91 2.14 -0.03% -2.03 -G.002 9 090

4 -0.31 1.32 1.08 0.037 -1.06 0002 0.048

’5 ~0.17 -0.001 0.24 0,067 -0.78 C.0062 €.229

2.6.2 Rolling Reversal

A rolling reversal combines a rapid pull-up with a
rapid rolling maneuver, resu.ting in a "corkscrew-like" path
through space. The combination of a high-accelerationpull-
up aund rapid rolling is expected to produce unstable modes
with considerable lateral-longitudinal coupling. Table
2.6-4 describes the rolling reversal working points examined
here. The corresponding eigenvalues, shown in Table 2.6-5,
illustrate the changes in aircraft stability as the rolling
reversal progresses. Due to the high U involved in this
mu.neuver, the Dutch roll mode is unstable throughout most of
the maneuver.

The initial and final working points of the rolling
reversal are symmetric flight conditions so there is no
lateral-longitudinal coupling during these phases of the
flight. This is demonstrated by the eigenvectors of the fast
modes at the first working point, which are shown in Fig.
2.6-1. The intermediate working points all occur during the
aircraft’'s roll and involve significant lateral-longitudinal
coupling. The eigenvectors ot the fast medes at Working Pcint

3, shown in Fig. 2.6-1, demonstrate this There is significant
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TABLE 2.6-4
ROLLING REVERSAL WORKING POINTS

cpon

Working
Point | Description Flight Condition
1 Hi-G Pull-up VO = 217 nr/s oy = 25 deg
t = 0 sec q = 15 deg/sec
eo = 30 deg
2 Roll V0 = 1€38 m/s ag * 26 deg
t = 4 sec Py = ~10 deg/sec q = 15 deg/sec
¢ = -90 deg 8y = 50 deg
3 Roll VO = 101 m/s oy = 26 deg
t = 10 sec Py = ~-15 deg/sec 9 = 15 deg/sec
Ty = -5 deg/sec 00 = ~180 deg
90 = -30 deg
4 Roll and Pull-up VO = 117 m/s ag = 23 deg
t = 15 sec Py = 10 deg/sec q = 15 deg/sec
ro = 5 deg/sec ¢° = 45 deg
eo = ~55 deg
5 Final Pull-up VO = 152 m/s ay = 20 deg
t = 22 sec Py ™ 0 deg/sec U = 10 deg/sec
¢g = O deg 8o = -10 deg
~ {
‘.
TABLE 2.6-5
ROLLING REVERSAL EJCENVALUES
VWorking
Point Short Period Dutch Roll Roll Spiral Phugoid
1 -0.873:34.07 0.1911+34.54 -0.910 0.139 -0.178 -0.056
2 -0.691%33.15 0.180+33.55 =-0.716 ~C.169 0.0124230.406
3 -0.403tj1.¢1 0.1072j2.10 -0.409 -0.224 0.122 2 jO.124
4 -0.394:32.34 0.131+£32.70 -0.711 -0.093 -0.153 2 jO.124
5 -J.593£31.78 -0.010233.83 -0.818 -0.082 -0.073 2 J0O.085
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Figure 2.6-1 Eigenvectors of Rolling Reversal

angle-of-attack (or Aw) motion in the Dutch roll mode and large
roll-sideslip perturbation in the short period mode. Even the

roll mode contains a significant angle~of-attack excursion.

The aircraft control effectiveness follows trends
similar to the aircraft stability, i.e., the control effec-
tiveness is degraded throughout the first half of the maneu-
ver, but it improves during the second half, as illustrated
in Table 2.6-6. The pilot must use the rudder as a roll con-
trol during the middle portion of this maneuver. This diffi-
culty is complicated by high angular rates, lateral-longi-
tudinal coupling, and extreme attitudes.

An aircraft executing a rolling reversal exhibits
unstable modes, lateral-longitudinal coupling, and reduced
control effectiveness as the maneuver progresses. all of
which make the pilot's task more difficult.
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TABLE 2.6-6

TRANSFER FUNCTION GAIN, KI, ALONG THE ROLLING REVERSAL
Working
Point Aw/Mh Ap/AG‘ Ap/AGr Ar/AGl Ar/A6r Av/AG. Av/Aer

- e — - .~

1 -0.62 1.87 1.53 0.204 -2.25 0.004 0.109

2 -0.36 0.597 0.781 0.142 -1,29 0.003 0.063

3 -0.012 =0,001 0.282 0.083 -0.485 0.001 0.023

4 -0.23 0.683 0.722 0.044 -0.771 0.061 0.036

S -0.42 2.91 1.73 «0.031 -1.513 0.002 0.0GG

2.6.3 Effects of Proportional Tracking

Rudimentary piloting effects can be examined by

assuming that the pilot attempts to control the aircraft's

attitude.

This can be modeled by a proportional feedback

of angular deviation (pitch or roll angle) to the appropriate

control surface (elevator or aileron).

delays are neglected.

Pilot lags or time

As an example, pitch attitude control

is chosen, and Lhe feedback gains are set so that the effec-

tive pitch moment due to pitch angle, M

e ’

the pitch moment due to angle of attack, Ma.

is a multiple of

Since this

is achieved by elevator feedback, there are changes to the

coefficients Xe and Z

6

as well.

The multiplying factor is
and the feedback

denoted by "i" in the following tables,

gain that produces equal M
flight condition is 0.64 deg elevator per deg of pitch

angle.

6

and M (i =
o

1) for the reference

back, which the pilot also might normally provide.

This simple model also disregards pitch-rate feed-

For symmetric flight conditions, this loop closure

does not affect the lateral eigenvalues; the longitudinal
The short-
period mode is both increased in frequency and decreased in

eigenvalue variations are shown in Table 2.6-7.

© T e
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TABLE 2.6-7

EIGENVALUE CHANGES DUE TO PROPORTIONAL TRACKING --
SYMMETRIC FLIGHT CONDITIONS

V. = 949 m/s o, = 15 deg qy = 0 deg/sec

0 0
: Phugoid (Pitch
i1 | Short Period Angle/Speed)
0 }-0.407+3j1.099] -0.017+30.137
1 ]-0.342+31.552 | -0.082+j0.068
2 1~0.319+31.906 | -0.157 -0.0522
4 | -0.302+32.47 -0.218 -0.0260

V. = 94 m/s

0 = 15 deg qy = 12 deg/sec

%0

Phugoid (Pitch

i Short Period Angle/Speed)

-0.417+j1.13 0.045 -0.069
-0.351+j1.57 -0.096 -0.038
-0.327+j1.92 -0.140 -0.063
-0.307:j2.48 -0.178 -0.064

Lo S o -

damping by the addition of a pitch attitude-to-elevater
feedback. For straight-and-level flight, attitud ~ontrol
increases the phugoid damping while decreasing th atural
frequency, resulting in the conversion of the phugoid mode
into two real modes -- a pitching mode and a speed mode.

In steady pitching motion, pitch--attitude control results in
increased stability for the pitch angle mode with relatively
little effect on the speed mode.

Coupled flight conditions lead to significant

effects on the lateral modes due to the longitudinal loop
closure. 1In Ref. 9, a pitch attitude-to-elevator loop
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closure resulted in an unstable lateral mode when the sub-

ject aircraft was in a steady sideslip. As shown in Table
2.6~8 for the example airnraft used in this report, pitch
angle-to-elevator feedback generally has a beneficial
influence on the lateral eigenvalues when this aircraft is
rolling at zero sideslip. However, the presence of a non-
zero nominal sideslip angle results in a mildly diverging
speed mode for moderate-to-large feedback gains. There is
an inaication that large attitude feedback gains destabilize
the Dutch roll mode (for a non-rolling aircraft) or the short
period mode (when the aircraft is rolling and slipping).

Regarding the pitch attitude-to-elevator feedback

as a simple pilot model, this examination confirms the earlier

result that pilot control of the longitudinal motion of an
aircraft could result in the destabilization of the aircraft
when the vehicle is in a steady sideslip. This would be due
to the pilot disregarding the lateral-longitudinal coupling

present in asymmetric flight conditions.

This simple attitude feedback underlines the

necessity for considering lateral-longitudinal crossfeeds

when designing a stability augmentation system for a high-

performance aicraft. To achieve acceptable performance,

it may be necessary to design a system that recognizes the
aircraft flight condition and adjusts its gains to suit the

situation.

2.7 CHAPTER SUMMARY
This chapter has presented a study of the dynamic

charac 2ristics of a high-performance aircraft, with special

emphasis on the effects of extreme flight conditions on
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TABLE 2.6-8

ETIGENVALUE CHANGES DUE TO PROPORTIONAL TRACKING --
SIDESLIP AND ROLL EFFECTS

VO = 94 m/s ay = 15 deg BO = 0 deg Pwg = 0 deg/sec
i | Short Period Dutch Roll Roll Spiral Phugoid
—— == —————— |
0| -0.407£j1.099 [ 0.0738%x3j2.25 | -0.442| -0.0545] -0.017*j0.137
1} -0.342+j1.552 | 0.0738:j2.25 | -0.442 | -0.0545| -0.082%j0.068
21 -0.319£31.906 | 0.0738+j2.25 | -0.442 | -0.0545| -0.157 -0.0522
4] -0.302+j2.47 0.0738+j2.25 | -0.442| -0.0545| -0.218 -0.0260
= 4 = = =
V0 94 m/s ny 15 deg 80 10 deg Pw, 0 deg/sec
i | Short Period Dutch Roll Roll Spiral Phugoid
0} -0.353%£j1.368 | -0.134+j2.11 | -0.434 | -0.0315] -0.024%*j0.146
1] -0.303%x31.76 -0.1532j2.11 { -0.431 | -0.081 -0.032£j0.124
2| ~-0.298+j2.15 -0.143+3j2.03 | -0.430| --0.021 ~0.287 (0.133
41 -0.327+xj2.63 -0.101:j2.08 |{ -0.428 | -0.152 -0.0247:j0.108
Vo = 94 m/s g = 15 deg 8y = 10 deg Pwg = -39 deg/sec
i | Short Period Dutch Roll Roll Spiral Phugoid
e =" —— —
0| -0.511+j1.32 -0.057+32.28 | -0.246+j0.199 0.071:j0.207
1| -0.3492j1.38 -0.116+j2.34 | -0.157+j0.413 -0.193 -0.050
21 -0.201+£31.77 -0.202+j2.44 | -0.215+3j0.480 -0.249 -0.0035
4| -0.038+3j1.93 ~-0.306+j2.80 | -0.270+j0.518 -0.275 0.0155]
V0 = 94 m/s % =7ii»deg BO = 0 deg Pwg = -39 deg/sec
i| Short Period Dutch Roll Roll Spiral Phugoid
0| -0.464+j1.29 -0.032+32.34 | -0.293%j0.144 0.043x30.189
1| -0.400*31.56 ~-0.044+j2.37| -0.167xj0.500 -0.207 -0.062
2| -0.334+3j1.82 -0.073+32.42} -0.208+30.600 -0.229 -0.035
4| -0.162:j2.10 ~0.201+)2.67| -0.246:70.666 -0.238 -0.02z8
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—
v



aircraft stability and control. The chapter first examines
previous studies of the dynamics, aerodynamics, and control
in this flight environment. The difficulty of measuring
angular rate and translational acceleration effects leads
to limited availability of this aerodynamic data, which

has a significant impact on the simulation and analysis of
dynamic departures. The survey cf stability and control

indicates a need for additional developments in these areas.
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3. EFFECTS OF CONFIGURATION VARIATIONS
ON AIRCRAFT DYNAMICS

3.1 OVERVIEW

Variations of aircraft configuration lead to changes
in the aircraft's eigenvalues, eigenvectors, and control
effectiveness. Section 3.2 presents the effects of changes

in the most important longitudinal stability derivatives on
the mode shapes and speeds. Similar effects caused by changes
in lateral stability derivatives are detailed in Section 3.3.

The effects of aircraft mass and rotational inertia variations

are given in Section 3.4. Section 3.5 presents a general dis-

cussion of possible departure modes and illustrates some of
the possible departure time histories. Section 3.6 is a

summary of the chapter.

3.2 VARIATIONS DUE TO LONGITUDINAL STABILITY DERIVATIVES

The longitudinal stability derivatives determine the
aerodynamic force and moment contributions to the longitudinal
perturbation equations, and these stability derivatives can
vary considerably from aircraft to aircraft. This section
surveys the changes in normal mode shapes and speeds for
different ranges of the most important longitudinal stability
derivatives.

Three aerodynamic derivatives dominate the short
period motion of the aircraft: Cmq, Cmy. and Cz . The sig-
nificance of these terms can be seen in reduced-order approxi-
mat .ons to the damping ratio, -, and natural frequency, W of
this mode:
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Over the range of likely values of the coefficients, the Cchza
. product usually is considerably smaller than Cma’ so it can

be expected that Cmq and CZa primarily affect short period

damping, while Cma changes only the short period natural fre-

quency.

The specific effects of varying CZOl and Cmq are
illustrated in Table 3.2-1. The primary short period eigenvalue
changes occur in the damping, as expected. The phugoid mode
does change somewhat, as an increase in the lift-curve slope
(Cza more negative) increases the phugoid natural frequency
at essentially constant damping ratio. An increase in the
magnitude of pitch damping (Cmq) decreases phugoid frequency

and damping significantly.

TABLE 3.2-1
Cza AND Cmq EFFECTS ON EIGENVALUES
(Vo = 94 m/s, a4 = 15 deg)

-1
Cz (rad 7)) | Short Period Phugoid
e —
-2.0 -0.345+31.096 | -0.0146+30.128
-3.2 -0.396+31.099 | -0.0162+j0.135
-5.0 -0.471+31.099 | -0.0181+3j0.145
-1 . .
Cmq(rad ) | Short Period Phugoid
-34.4 -0.642+3j1.058 -0.013:‘]'0.130%I
-17.2 -0.399+31.099 | -0.017:30.137
-5.73 -0.236+31.098 | -0.020+30.143
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Variations in the longitudinal stability deriva-
tives affect the lateral modes only when the aircraft is in
asymmetric flight. In that case, mode coupling occurs--
Table 3.2-2 illustrates the changes in the Dutch roll and
short period modes for asymmetric flight as Cmq varies. The
transfer of damping from the short period mode to the Dutch
roll mode for non-zero BO has been observed in Section 2.4,
In the case of reduced Cmq, this transfer is essentially
unchanged, indicating that short period damping due to Cza
(see Eq. (3.2-1)) is transferred whereas damping due to Cmq
is not. This is supported by the observation that Dutch
roll eigenvectors for non-zero 80 (Fig. 2.4-4) include much
more angle-of-attack motion than pitch rate.

TABLE 3.2-2
EFFECTS OF Cmq ON EIGENVALUES IN ASYMMETRIC FLIGHT

ag = 15 deg 80 = 0 deg Pwg = 0 deg/sec

Short Period Dutch Roll

==——__ _ |

Cmq = -17.8 (rad'l) -0.407+31.099 | -0.074+j2.251
-1
cmq = -5.73 (rad 7) | -0.236+3j1.098 | -0.074+j2.251
@y = 15 deg BO = 5 deg Pwg = 0 deg/sec
Short Period Dutch Roll

—
cmq = ~17.8 (rad-l)| -0.382:31.201 | -0.0946+.j2.024
cmq = -5.73 (rad-l)| -0.205+j1.205 | -0.0956+j2.024

a, = 15 deg 80 = 0 deg pr = -39 6 deg/sec

Short Period Dutch Rcll
e e e e e
Cmy = -17.8 (rad=1)| -0.464+31.294 | -0.0319+j2.342

Cmy = -5.73 (rad-1l)| -0.2912j1.295 | -0.0343+32.337
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None of the stability derivatives discussed has any
effect on the control effectiveness, which determines the
transfer function gain, KI; therefore, the initial response /
to control inputs does not vary with Cz, and C; . Hcwever,
stability derivative variations do affect the transient res-
ponse through changes in poles and zeros.

Variations in the aircraft's center of gravity cause
variations in aerodynamic moment coefficients. The center
of gravity (c.g.) is the rotational center of the aircraft.
For fixed aerodynamic center of pressure, c.g. variation
leads to static margin variation; hence, the moment rela-
tionships are altered.

The static margin is the distance between the c.g.
location and the aerodynamic center, and it is usually expressed
as a fraction of the mean uerodynamic chord, ¢. Figure 3.2-1
details the changes in the longitudinal eigenvalues as the
static margin is varied from 0.33 through its usual reference
location of 0.17 to -0.15. This results in a Cmu variatioq

from -1.17 to 0.554 rad™l, as well as changes in Cmg from
-21.1 rad~1 to -11.2 rad-1.

The eigenvectors (Fig. 3.2-2) change considerably
as the c.g. moves aft. While the short period and phugoid
modes stiﬁl are recognizable at a static margin of C.06
(CmOL = -0.17 rad-l), a transition region is entered as the
c.g. moves further aft. At a static margin of 0.01
(Cma = -0.02 rad’l), a new ('"third") oscillatory mode which
diszlays significant perturbations in all longitudinal states
is evident. Two real convergences comprise the other longi-
tudinal modes -~ one fast attitude mode occurring at constant
veliocity and flight path angle and one slow velocity mode
that involves significant flight path angle variations.
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Control effectiveness changes only slightly with

c.g. location, but the transfer function gain, K does

F »
vary as shown in Table 3.2-3. The zeros of the Aw/A5h trans-
fer function are given in Table 3.2-4. Both of these tables
indicate the well-behaved nature of the numerator of the

elevator-to-angle of attack transfer function.

TABLE 3.2-3

C.G. LOCATION EFFECTS ON TRANSFER
FUNC.ION GAIN, Kp

(V. = 94 m/s, a, = 15 deg)

0 0
Static Margin Aw/Adh Ap/Aéa Ar/Aér
0.17 -5.17 -0.66 -5.39
0.05 -5.76 -0.57 -5.51
-0.03 -6.15 -0.51 -5.59

TABLE 3.2-4

COMPARISON OF ZEROS OF Aw/Aéh AT
THRFFE C.G. LOCATIONS

Static Margin 21,2 Z3
0.17 -0.0025+30.1167 | -21.07
0.05 ~-0.0038+30.1238 | -20.998

-0.03 -0.0047:30.1283 | -20.850

This section examines the effects of longitudinal
stability derivatives, and the following conclusions are

made:
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o Reductions in pitch damping (Cmq) and
lift-curve slope (Cza) reduce the short
period damping without changing the
frequency.

° Lateral-longitudinal coupling produced
by sideslip transfers damping due to Cr
to the Dutch roll mode from the shoit
period mode, but damping due to Cmq re-
mains in the longitudinal plane.

°® The c.g. location affects Cp, directly,
and a rearward c.g. location results in
the creation of a new unstable oscillatory
mode that exhibits significant perturba-
tions in all longitudinal variables. 1In
addition, two stable real mocd<s are
created -- a fast attitude mode and a
slow velocity mode.

) The numerator of the elevator-to-anrle of
attack transfer function is well behaved
at rearward c g. locations.

3.3 VARIATIONS DUE TO LATERAL-DIRECTIONAL STAEILITY
DERIVATIVES

In this section, variations in ClB’ Cnr, Clp» and
Cnr are studied to determine their effects on the lateral-
directional modes. Experimental information on the value

of Cné is limited, so an investigation of possible effects
of Cné on eigenvalues is included in this sectioa.

The elfects of C“E’ ClS’ and Clp variations are
shown in Fig. 3.3-1. Increac@s in magnitude c. CnB and ClB
cause an increase in the frequency uf the Dutch roll mode.
Additionally, both parameters cause some change in damping,
with larger CnB increasing the damping ratio and larger
CIB magnitude decreasing the Dutch roll damping ratio.

Larger ClB magnitude causes the piral mode to ke more stable.
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effects of Clp
in the roll convergence mode.

on Lateral-Directiones]l Eigenvalues

Figure 3.3-1 indicates that at % of 15 deg the

appear in the Dutch roll damping ratio and

Effects of ClB’ CnB’ and Clp Variations

The presence of these effects

is predicted by the apprcximate lateral-directional equa-

tions, Egs.

(2.4-1) to (2.4-5), but the approximate equa-

tions give an inaccurate indication of the size of these

effects.

Equations (2.4-~1) and (2.4-4) predict much larger

variation in the roll mode eigenvslue due to Clp variation

than is indicated in Fig. 3.4-1. Conversely, Egs. (2.4-2)

and (2.4-5) predict a much smaller variation in Dutch roll

damping ratic than occurs in the complete model of the

subject aircraft.
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The lack of accuracy of the approximate equa-
tions results from the fact that the subject aircraft does
not conform to the assumptions upon which the approximate
equations are based. The subject aircraft exhibits much
more roll motion in Dutch roll mode (as shown by the
eigenvectors in Fig. 2.4-3) because it rolls easily (due
to low Ix/Iz ratio) and because its reoll-yaw and roll-
bideslip cross derivatives (Clr, Cnp,and ClB) are not
small when properly compared to the roll and yaw-sidesiip

derivatives (Clp, Cnr’ and CnB)'

Table 3.3-1 compares the lateral-directional eigen-
values for C“B and ClB variations in the presence of non-
zero nominal pitch rate. A comparison of the eigenvalues
indicates that the effects of steady pitching are independent
of the changes in aerodynamic coefficients. In all cases,

positive pitch rate destabilizes the Dutch roll and sriral

modes and speeds up the roll mode.

TABLE 3.3-1
EFFECTS OF CnB AND ClB VARIATIONS IN THE
PRESENCE OF STEADY PITCH RATE

Dutch Roll Rcll Spiral
Referenc- a, = 0 -0.0738+32.251 | -0.443 | -0.0545
Values
qy = 12 deg/sec 0.114+3j2.320 ~-0.839 0.0220
Cny = 0.0 4q = 0 -0.0043%j1.855 | -0.499 | -0.127
-1
d
(rad =) qy = 12 deg/sec | 0.214%j1.996 |-1.016 | 0.0063
FC1, = -0.338 |q) = 0 -0.0505+31.996 | -0.459 | ~0.0752
-1
(rad ) a, = 12 deg/sec | 0.150:j2.638 |-0.904 | 0.0135
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The approximations of Egs. (2.4-2) and (2.4-5)
indicate that the change in the Dutch roll mode's real
part should be approximately proportional to the change in
Cnr' Table 3.3-2 indicates that this is not true in this
example, for as Cnr increases by a factor of 20, the Dutch
roll mode's real part cnly doubles. The other significant
effect caused by a *eduction in yaw damping magnitude is
to destabilize the spiral mode.

TABLE 3.3-2
EFFECTS OF Cnr VARIATIONS

Cn, Dutch Roll Roll | Spiral

-1.200 -0.0983:j2.2468 | -0.4612 | -0.1396

-0.646 -0.0738+32.2508 | -0.4425 | -0.0545
-0.0602 | -0.0477x3j2.2523 | -0.4304 0.0422

The derivative Cné is an acceleration derivative
(analogous to Cm&) that arises because the aerodynamic flow
field exhibits some lag in rearranging itself following a
change in aerodynamic angle. Acceleration terms are approxi-
mations to these flow field dynamics. Experimentally,
acceleration derivatives are difficult tc measure, and
they usually are combined with the rotary derivatives.
Analytical studies often make the assumptions that

éné =0 (3.3-7)
énr = Cpp - COS a4 Cné (3.3-9)
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Reference 46 examines some of the possible effects
of this approximation on aircraft time histories and param-
eter identification. It is concluded that significant param-
eter identification .errors can occur if the acceleration
derivatives are not included in the model when necessary.

Two types of Cné effects have been examined. 1In
the first type, non-zero Cné is added to the model with no
other change; this eff=ctively decreases the total damping.
In the second type, Cnp and Cnr are adjusted by subtract-
ing the Cné terms given in Eqs. (3.3-8) and (3.3-9) to
maintain nearly constant damping. In the variable damping
case (in which Cnr and Cnp are constant), the only change is
in the Dutch roll eigenvalues. There is sigrificant cbange

in damping and a slight change in frequcncy. This indicates

that Cné primarily affects the Dutch roll mode. The constant

damping cases are quite different, in that the changes in
Cné, Cnp, and Cnr effectively cancel, as far as the Dutch
roll mode is concerned. In this case, however, there are
significant changes in the roll and spiral modes. These
changes are not due to Cné (which does not affect the roll
and spiral mcdes) but rather to the corresponding chanzes in
Cnr and Cnp- Therefoie<, combining Cné with Cnp and C“r leads
to erroneous eigenvalue calculations in modes not directly

affected by Cné at all.

Table 3.3-3 illustrates the constant darniang rcsults
with and without steady rolling motion. Non-zero Cné affects
the frequencies of the oscillations only slightly in the
presence of rolling motion, but there are significant changes
in damping of the various modes. Dutch roll damping ratio
changes for non-zero Cné when the vehicle is rolling, and
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TABLE 3.3-3
EFFECTS OF Cné IN THE PRESENCE OF STEADY ROLLING
(Cnp and Cnr Adjusted to Maintain Constant Damping)

T-0251

Short Period Dutch Rcll Aoll Spiral Phugoid

Cng = © (rad™1) Pyp = O deg/sec

-0.407231.099 -0.0738:32.251 -0.442 -0.0345 ~0.01€65:3j0.137

Cag = O (Pad_l) Pyg = -39.6 deg/sec

-0.464:31.294 -0.0319%32.232 -0.293:-30.3144 0.0427230.189

Cpg = 0.55 (rad-l) Pyg = G deg/sec

-0.407£31.099 -0.0757=zj2.

(3%

36 ~0.325 0.0321 -0.0165:30.137

Cng = 0.55 (rad ) Pyg = -3¢.6 deg/sec

-0.481:31.290 -0.0411:*32.345 -0.287230.124 -0.0630+3j0.183

this is not observed for the non-rolling, constant damping

case. The conclusion is that an improper Cné identification

mayv not appear in the Dutch roll mode for non-rolling flight,

but it Ban catse a significant change in the Dutch roll mode

during a rolling maneuver,

The folloviing points summarize the findings of
this report concerning the effects of lateral stability

derivative variations:

° The large amount of rolling in tbhe

subject aircraft means that Cq
v,dyn
and C 2re poor indicators of
Iy dyn

the roll mode's cigenvalue and the
Dutch roll mode's real part.

® CnB and ClB variations primarily affect
the Dutch roll frequency, as indicated
by C . Variations due to steady
ng dyn



pitching motion are independent of the
effects caused by changes in CnB and ClB'

° Due to the large amount of rolling motion
in the Dutch roll mode, Clp has a larger

than expected effect on Dutch roll damp-
ing, while the effect of Cnr is smaller
than might be expected.

° Cné by itself primarily affects the Dutch

roll mode, but subhtracting its effect
from Cnp and Cnr (holding the damping

constant) leads to large roll mode and
spiral mode changes and small Dutch roll
mode variations.

° In the presence of steady rolling, there is
a significant Cné effect on the Dutch roll

mode even for the constant damping case.
Coupled flight conditions should be
investigrted when the identification

of Cng is desired.

©

3.4 VARIATIONS DUE TO MASS AND INERTIA EFFECTS

The variations in the aircraft modes due to mass and
rotational inertia changes are examined in this chapter. The
rotational inertias considered span the range of aircraft
types (from wing-heavy to fuselage-heavy), and the mass
variations range from light to heavy wing loadings.

Table 3.4-1 details the aircraft eigenvalue trends
as aircraft mass varies. The rotational inertia matrix
is held constant (as if a point mass was added or subtracted
at the vehicle's center of gravity), so the ratios between
the mass and inertia also vary. The mass change represents
a change in relative density, u, which is defined as

b = m/pSc (3.4-1)
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EFFECTS OF AIRCRAFT MASS

TABLE 3.4-1

A /
(VO 94 m/s,

C!O=

ON EIGENVALUE LOCATION

15 deg)

Mass

Short Period I Phugoid

Dutch Roll | Roll | Spiral

30€0. kg
5055. kg

8175 kg

-0.572+31,07 | -0.028+30.186
-0.442+31.09 | -0.019+j0.150
-0.367+3j1.10 [ -0.013430.120

-0.120+32.25 | -0.442 | -0.054
~0.084+32.25 | ~0.442 | -0.055
-0.062+32.25 | -0.443 | ~0.055

where ¢ is

2 reference length. The relative density relates

the aircraft mass to the air density, and therefore indicates

the relative magnitude of aerodynamic and inertial effects.

Variations of the aircraft mass have a large effect

on the damping of the rotational oscillations -- Dutch roll

mode and shor* period mode -- but only a negligible effect

on their frequencies.
essentially unchanged.

The spiral and roll modes also are
Yass variations change the phugoid

mode's natural frequency and damping ratio, because this

mode involves the interchange of kinetic and potential

energy and is highly mass dependent.

The rotational inertia of the aircraft describes the

distribution of the aircraft mass abocut the center of gravity.

Mcst of the inertia is due to the fuselage and the wing, and

the relation between them leads to the designation of a

specific configuration as "wing-heavy' or '"fuselage-heavy."

The yaw ineriia is approximately 10 to 15 percent

tTarger than

the pitch inertia, and the rcll inertia can be

from 4 to 12 times smaller than the vaw inertia. High per-

formance fighters emphasize high rolling performance, and

tend to be

fuselage-heavv., Transport aircraft are built for

cruising efficiency and tend to be wing-heavy.

[



Table 3.4-2 details the results of two rotational
inertia investigations, one with constant rolling inertia
(Ix) and varying fuselage inertia (Iy and Iz), and one with
constant fuselage inertia and varying rolling inertia. 1In
neither of these case- is the phugoid mode significantly
affected, underlining the conclusion that the phugoid is a
translational mode rather than a rotational mode. For the
uncoupled reference flight condition, the short period mode is
affected only by a change in pitch inertia; an increase in
pitch inertia causes a major decrease in short period fre-
quency and a small decrease in damping ratio.

TABLE 3.4-2
EFFECT OF ROTATIONAL INERTIA ON EIGENVALUES

Fuselage Inertia Varied — Iy Held Conpstant (Vg =81 n/s, ag =25 deg)

1
Iv/Ix Short Period Dutch Roll Roll | Spiral Phugoad

IZ/IX
I —

4.4 4.0 | -0.534:j32.01 0.102:31.59 |-0.483 | -0.071 -0.018:70.156

8.8 8.0 | -0.329231.43 0.085:31.54 -0.366 | ~0.050 } -0.018:30.157
13.2 12.0 | -0.2612j1.17 0.0788+31.52 [-0.327 | -0.039 | -0.017=30.157

Roll Inertia Varied - Iy and Iz Held Constant (VO'-94 m/s, ao==15 deg)

/T 1/,

Short Period Dutch Roll Roll Spiral Phugoid

4.4 4.0 ~0.407231.099 | -0.04282j1.826(-0.313 | -0.03537 | -0.0165:30.137

8.8 8.0 -0.407+J1.099 | -0.0738£32.251|-0.443 | -0.0545 | -0.0165z30.137

The lateral modes are affected by an increase in
rolling inertia, in that both Dutch roll frequency and roll
mode response are slowed significantly. There is a signi-
ficant decrease in Dutch roll damping and very little change
in the spiral mode. Larger values of yaw inertia lead to
somewhat different effects. Both roll and spiral modes are
significantly slower, and there is sore decrease in Dutch

roll damping ratio and frequency.
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The effects of a large rolling inertia on the

rolling/slipping stability are shown in Fig. 3.4-1.

The

stability boundaries are generally similar to those shown

in Fig. 2.4-10, although they differ in detail. The Dutch
- roll mode is stable for the higher rolling inertia.

The

phugoid instability combines with an unstable spiral mode
at high sideslip angles and roll rates to form a fast,
\

. highly unstable oscillation.

SIDESLIP, B, (deg)

FAST
UNSTABLE
OSCILLATION
{SPIRAL/PHUGOID)

SPIRAL UNSTABLE
PHUGOID UNSTABLE

70777777
SPIRAL UNSTABLE
PHUGOID STABLE

//////II
/ /. /muoom STABLE,
ALL MODES
(EXCEPT PHUGOID) //
STABLE ”7 //
-
50 -40 -3 -2 -0 0 10 0 30 40 30

ROLL RATE, P..,o (deg/sec)

//)5ae®

F.gure 3.4-1 Effects of Large Rolling Inertia

on Aircraft Stability
(1x =14,370 kg-m2)

Conclusions unncerning the effects of mass
jnertia variations are suimarized as follows:

o Mass increases r=duce Dutch roll and
short period damping, but mass varia-
tions do nct have large effect on the
short period or Dutch roll mode fre-
quencies. They Jo not cause signifi-
cant changes in the roll or spiral
modes.

and



@ The phugoid mode is a translational mode
and is greatly affected by mass varia-
tions. The phugoid eigenvalue does not
depend strongly on rotational inertia.

° Increases in pitch inertia reduce short
period frequency and damping.

® Increases in roll inertia increase the
roll mode time constant, decrease the
Dutch roll frequency significantly, ard
modify the effects of mode coupling due
to asymmetric flight.

® Increases in yaw inertia primarily slow the
roll and spiral modes, and there is some
effect on Dutch roll damping and frequency.

3.5 CLASSIFICATION OF DEPARTURES

Departure from controlled flight can occur in two
ways. Unforced departures are due to instabilities in the
basic aircraft. Ffven if the pilot does not move the controls,
small perturbations in the aircraft states build up until the

aircraft can no longer be controlled. In a forced departure,

the basic aircraft may or may not be unstable, but the addi-
tion of a pilot loop closure creates an unstable vehicle-
pilot system. The two following sections discuss these de-
parture classes.

3.5.1 Unforced Departure Mudes

Unforced departures occur when the pilot cannot or
does not stabilize an unstable vehicle. The vehicle eigen-
values directly indicate the open-loop system stability in
this case, so that nany of the stability boundaries that have

been shown in this report can be classed as unforced departure

boundaries.
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The speed of the fast modes (Dutch roll mode, short
period mode and roll mode) is such that the stability of
these modes is critical, and the least stable of these usually
is the Dutch roll mode. This mode can bacome unstable in two
ways, either resulting from negative 'spring terms" or result-
ing from negative damping, both of which can he influenced by
aerodynamics and coupling effects.

The approximate equations for the Dutch roll mode (Egs.
(2.4-1) and (2.4-2)) indicate a pure static instability for large,
negative CnB’ but the exact result is somewhat more complex. As
in the case of longitudinal mode coupling due to positive CmOl
(Section 3.2), directional instability can cause the Dutch roll
mode to couple with the classical roll and spiral modes, and it
can lead to a new oscillatory mode, analogous to the so-called
"roll-spiral" or "lateral-phugoid" mode. Fignre 3.5-1 illus-
trates a case in which negative Cn8 caus<s an oscillatory
mode that has low natural frequency and is highly unstable.
By comparison to the conventional Dutch roll mode (Fig.
2.4-3), there is a significant change in mode shape. There

SPIRAL ROLL-SPIRAL ROW
. aé
JOv
Cl\ﬁ s «0859 u
- 4=
C"B‘ d’ﬁ s '0‘34‘ )'
v Or v A
Do Ap

-1.822 0.755 £0.620 -0.334

Figure 3.5-1 An Example of Lateral-Directional Eigenvalurs

for Negative Directional Stability
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is a 180-deg phase change in the yaw-rate component, as well
as a substantial roll angle change. In addition, the spiral
mode has gained significant Av, Ar, and Ap components.

The depariure caused by this type of instability is
shown in Fig. 3.5-2. Although the linear mnodel indicates
that this motion is an osciiiation. it is so unstable that
only part of a period appears on the . ..e hlstory plot. The
first few seconds of the motion exhibit a rapid roll-yaw
angular motion. The pilot would sense a rapid rotational
divergence about this axis and might refer to it as a

rolling '""mose slice” or yaw departure.

200 10
3 -
:8; 100} 3 -
3 3
< 90 o O
> z
=g w
§ <100k ™. % -5t
- 1 i 1 ] .10 1 i el
2000 ! 2 3 4 S 0 1 2 3 4
TIME, t (sec) TIME. § {sec)
100 400

200 -

YAW RATE, Ar (deg /sec)
v
o) o
ROL! ANGLE, A¢ {deg)
o

; =200
- 1 A A . .400 A " A \ L
‘OOO ] 2 k] 4 S o] 1 2 3 4
TIME, 1 (sec) TIME, t {sec)
Figure 3.5-2 An Unforced Depa.ture Due

to Negative C"B
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Negative yaw damping leads to a more conventional
destabilizing of the putch roll mude, which retains its
characteristic mode shape. The time his.ory of a departure
due to dynamic Dutch roll instability is shovn in Fig. 3.5-3,
and the difference in shape from the departure due to static

instability is apparent.

0o | ©
} 30} ji 0r
i | . _ /
§ o ya Nl /\ § 0 Py /\
3 \/ ‘\/ \/
e S N S S 205 R e s
TIME, ¢ [vec) ° TIME, ¢ {sec)
’ %
/AN I
% 0 \//\\/ 3' ®F
3 : N /
§ al T Pran.
i | : \/
'“0 ) 2 . 4 * . * l . 10 "00 2 4 o * | * 10
TIME, t [sac) TIME, t (soc)
Figure 2.5-3 An Unforced Departure Due to

Negative Dutch Roll Damping

The large amount of rolling motion in the Dutch roll
mode indicates that this may be what pilots refer to as

"wing rock." This is uncertain, however, since "wing rock"”

also could be a roll-spiral oscillation or a limit cycle caused

by an aerodynamic non-linearity.

in any case,

a pilot sensing

such an escillation probably would unload t"e aircraft by

reducing the angle of attack, removing the aircraft from tr=

region of instability.
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A third type of unforced departure can occur at high
sideslip angles. The modes of motion ai. shown in Fig. 3.5-4,
a. the unstable roll r.ode is seen to exhibit a mixed rclling-
yawing departure characteristic. This divergence is rapid
and, as shown in the stability boundari s of Fig. 2.4-2, can
appear with cnly small aerodynamic angle changes from a much
more benign flight condition.

SHORT PERIOD DUTCH ROLL ROAL SMRAL MUGOID
Artig %: oy ae ,
r-%
Vo X0lps e, g & & Bo
Qg1 25dey . O \ ar Al be & o¢
84t idey o8 - -V 7“& - - l-\l o
F - O 1N
) =
d av & A‘é‘ﬁ. Ge
~0.6382;0.74} -Q0%372,;1407 Q420 -000%? -0.03602,0.30

Figure 3.5-4 Eigenvalues and Figenvectors for a Flight
Condition with Large Sideslip Angle

This unstable roll mode is essentially a pure roll
about the stability x-axis, but, because of the large nominal
aerodynainic angles, it appears as a roll-yew motion in body axes.
It is possible that a pilot fiying an aircraft at these large
angles would interpret a scability-axis rolling depa.ture as
a ''nose slice."

3.5.2 Forced Departure Mcdes

Control inputs firom a gilnt or control system can
force an aircraft to depart from controlled flight in two
ways. In the first way, .lverse responce to pilot inputs
moves the nominal flight condition into an unstable region
where an unforced departure can occur. The second ;ussible
cause of a forced departure is an improper loop closure that
creates an unstable closed-loop system. Departure preven-

tion procedures are quite different for the two cascs; in
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the former case, positive control action is necessary for

recovery, whie a neutralization of control inputs might
allow a recovery from the latter departure.

An example of an improper loop closure was pre-
sented in Section 2.6. In that case, the target-tracking
pite: attitude-to-elevator loop closure caused lateral mode
stability problems at coupled flight conditions. This un-
derlines the necessity of including control cross-couplings

in situations where the system itself is coupled.

The target-tracking example can be considered as
a situation in which the pilot learns to control the air-
craft at one flight condition but does not change his con-
trol strategy as the flight condition changes. This is
emphasized by the observation that coupled flight conditions
often exhibit drastic changes in the shapes of the normal
modes, so that a pilot might apply the wrong control action.

The investigation of Section 2.5 demonstrates that
control effectiveness problems may leave the pilot no alter-
native but to apply a poor control combination. For example,
a. 25-deg angle of attack, the roll moment due to aileron is
essentially zero. The rudder would rave to be used for roll
control but this brings an unavoidable sideslip response
with it. This sideslip could drive the vehicle into the
roll divergence region cited in the last section.

As an example of unexpected control response, Fig.
3.5-5 shows a departure caused by an aileron input. Nor-~
mally, the result would be a significant negative roll rate,
but the sideslip and yaw rate build up so rapidly that the
instability of the basic aircrz“t results in a rapid rolling
departure with positive roll rate.
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Figure 3.5-5 ‘Aileron Input for Negative CnB

Situations in which improper pilot inputs are likely
are discussed in Section 2.5. These situations are character-
ized by reduced stability of the open-loop system (due to high
angle of attack or pitch rate) and highly coupled modes caused
by an asymmetric flight condition (such as non-zero Bo or'pwo).
Nonminimum-phase zeros often appear and can cause great dif-
ficulty if "tight'" control is attempted.

The conclusions regarding departure modes are summar-

ized as follows:
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° An unforced departure (one due to an

unstable open-loop system) is most
likely to appear in the lateral oscilla-
tory mode. Static instability results
in a rapid rolling-yawing departure,
while dynamic instability causes an
unstable "wing rock" motion.

) An unstable wind-axis roll divergence
can appear at extreme aerodynamic angles.

° Forced departures can occur when de-
graded control response causes the pilot
to fly the aircraft into a flight con-
dition where unforced departures are
likely.

° Mode coupling or unexpected nonminimum-
phase zeros can change the control re-
sponse so that a "normal" control loop
closure leads to an unstable closed-loop
system.

3.6 CHAPTER SUMMARY

This chapter has presented effects of configurational
variations on aircraft dynamics. Relationships between mode
approximations and exact results are discussed for longi-
tudinal, lateral, and coupled motions, and examples of
various departure types are presented. It is shown that
the effects of aerodynamic parameter variations are modified
by the coupling which results in asymmetric flight, par-
ticularly in regard to the transfer of damping (due to
rotary derivatives) from longitudinal to lateral-direc-
tional modes (and vice-versa). Time histories of linearized-
model response illustrate departure characteristics similar
to those experienced in flight.
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4. PREVENTION OF DEPARTURE FROM CONTROLLED FLIGHT

4.1 OVERVIEW

As indicated by earlier developments in this report
and the summary of prior work in Section 2.2, there is ample
reason to consider designing stability augmentation systems
for the specific purpose of preventing departure. Aircraft
design is dominated by performance requirements, and even
unconstrained configuration modifications may not provide
adequate stability or control response (especially during
extreme maneuvering). Appendix A and Chapters 2 and 3
demonstrate how linear-time-invariant models of aircraft
dynamics can be derived for studying stability and control
response during difficult maneuvers. These models are used
to illustrate stability augmentation system concepts in the
present chapter.

Unlike earlier studies of departure prevention,
the powerful tools of linear-optimal control theory are
applied to the problem in this chapter. Since new grournd is
broken and methods which are unfamiliar (in the departure
prevention context) are presented, the objective is to pro-
vide preliminary guidelines for Departure-Prevention Sta-
bility Augmentation System (DPSAS) development. Therefore,
a simple optimal controller -- the continuous-time linear-

optimal regulator -- is applied to departure prevention. A

linear~optimal regulator is a feedback control law of the

form.

Au(t) = -KAx(t) (4.1-1)
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where Au(t) is the vector of control command perturbations,
Ax(t) represents the vectc: of the aircraft's dynamic states,
and K is the gain matrix which scales the state measurements
for proper stabilization ard4 compensation of.the aircraft's
motion. (An equivalent discrete-time linear-optimal regu-
lator, for which the state is measured and control is com-
manded at a fixed sampling interval, car be derived for a
digital flight control system.) This control law has several
qualities which are desirable for the present study, in which
i+ is assumed that system dynamics are known exactly and that
all states are measured precisely:

° The control gains guarantee stability
of the closed-loop system.

° Complete longitudinal/lateral-directional

coupling is assumed and is accounted for
in the design process.

° The control design technique identifies
all significant crossfeeds and intercon-
nects, as well as feedback gains.

® Tradeoffs between the amplitudes of state
perturbations and of control motions are
specified in the design process.

In addition, a gain-scheduling algorithm which accounts for
varying maneuver conditions is developed.

The control design techniques applied to the DPSAS
can be generalized to full command augmentation systems for
a high-performance aircraft. Reference 58 shows how
practical command-response control laws can be developed for
a highly coupled aircraft, a tandem-rotor helicopter. These
control laws satisfy classical step-response criteria, adapt
to flight condition, honor rate- and displacement-limits on
control actuators, and use incomplete (possibly noisy)
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feedback measurements. A command-response system for a high
performance fighter is described in Ref. 59. It adapts to
flight condition to provide uniform handling gqualities
throughout the flight regime. These control laws are de-
veloped for direct implementation in a digital computer

and use low sampling rates. This extension of the DPSAS to,
a complete flight control system, while promising, is a
subject for future study.

The remainder of this chapter is directed to a
brief explanation of linear-optimal regulator design and
extensive application of this control design approach to
DPSAS examples. Section 4.2 presents the linear-optimal reg-
ulator and a discussion of the parameters used in computing
control gains. Control designs are developed for a refer-
ence aircraft over a wide range of angles of attack, pitch
rates, sideslip angles, and roll rates at a single altitude-
velocity point -- the central flight condition of 6100 m,

94 m/s -- in Section 4.3. The symmetric and asymmetric
variations in flight condition are considered separately,
in order to make the differentiation between pullup and
sideslip-rolling effects more apparent. Control gains are

computed at 32 maneuvering conditions to obtain the results
of Section 4.3; with eight states fed back to four control
effectors, over 1000 gains are generated. In Section 4.4,
these gains are correlated with each other and with maneuver
conditions to identify candidate interconnects and gain-
scheduling relationships. Negligible and constant gains also
are identified in the process. The chapter iz summarized in
Section 4.5.
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4.2 THE LINEAR-OPTIMAL REGULATOR

Optimal control theory provides a useful and
practical multi-input, multi-output control system design
tool. Linear-optimal control methods are based on the
differential equations that describe the vehicle in the
time domain (Eq. (A.3-3)), and they producec feedback con-
trollers which exhibit desirable properties.

The problem is to find a controller for the system
described by Eq. (A.3-3), which exhibits a linear feed-
back structure (Eq. (4.1-1)) and minimizes & scalar-valued
cost functional of the state and the control:

(-]
J= S (0x” QAx + Aul RAu) dt (4.2-1)
0

This controller is called a linear-optimal regulator, and
it is derived in Refs. 60 to 62.

The designer's freedom rests in his choice of the
weighting matrices, Q and R. The design procedure consists
of the choice of Q and R, the computation of the Riccati
matrix, an evaluation of closed-loop performance, and the
adjustment of Q and R as discussed in Section A.4.4.

The linear-optimal regulator is a tool for design-
ing a Departure~Prevention Stability Augmentation System
(DPSAS). It is not a limiter, because no limits are placed
on the pilot's control authority, and it is not an auto-
matic spin-recovery system, because open-loop anti~spin con-
trol settings are not implemented. The DPSAS is intended to
augment stability and to minimize the gyrations which pre-
cede loss of pilot control. The DPSAS makes full use of
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available control power, and, in this respect, could com-
pete with the pilot's control commands; however, the de-
signer can specify the amount of control-surface displace-
ment which normally is available to the DPSAS. Basing the
system on the linear-optimal regulator, the DPSAS can be
designed to use less than full control authority for expected
magnitudes of aircraft maneuvers, leaving a percentage of
control authority free for manual commands.

The primary objective of this chapter is to iden-
tify the basic effects of varying flight condition on the
structure of a DPSAS. To keep the number of varying param-
eters to a minimum in this demonstration, the state and
control weighting factors (Eq. (A.4-21) and (A.4-22)) are
chosen at a single symmetric flight condition and held con-
stant throughout the sweep of 32 maneuvering conditions. Q
and R elements which provide satisfactory eigenvalues,
acceptable time response, and reasonable control gains are
chosen at the central flight condition of this sweep
(a0=15 deg, V=94 m/s fps, H=6100 m). Thus, it is expected
that eigenvalues and control gains will vary with flight con-
dition, but the rms-values of state and control perturbations
should remain relatively constant.

The Q and'R elements are used as design parameters
which can be interpreted as the following maximum allowable
rms perturbations:

° Throttle setting: 100% of full scale
[ Elevator deflection: 20 deg

° Aileron deflection: 60 deg

) Rudder deflection: 30 deg

° Euler angle: 30 deg

° Body angular rate: 25 deg/sec

) Body velocity: 9 m/s
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These values indicate that throttle setting, ele-
vator, aileron, and rudder are allowed to vary between their
limits and that angles of attack and sideslip must be held
within 5.6 deg (the 9 m/s body velocities correspond to
aerodynamic angles of this number). Table 4.2-1 indicates
that the primary effects of the loop closures at the cen-
tral flight condition are to increase short period, Dutch
roll, and phugoid damping and to quicken the roll and spiral
modes.

TABLE 4.2--1
EFFECTS OF DPSAS AT THE CENTRAL FLIGHT CONDITION

Open-lLoop Characteristics Closed-Loop Characteristics
Dzz;’:“ Natural Damping Time Natural Damping Time
Frequency, Ratio, Censtant, Frequency, - Ratio, Constant,
rad/sec - sec rad/sec - sec
Short Period 1.17 0.35 - 2.67 0.72 -
Dutch Roll 2.2% 0.03 - 2.35 0.69 -
- - - - 2
Roll 2.26 0.36
Spiral - - 18.34 - - 1.07
Phugoid 0.14 .12 - 0.16 0.99 -

This illustrates implicitly that the linear-optimal
regulator design can produce stricter tracking than indicated
by the choice of Q and R elements. The Ao and A8 require-
ments can be met only by increasing damping and decreasing
time constants. This infers that Euler angles and body
angular rates also are closely regulated, even though the
weighting of the corresponding elements in Q is light. Table
4.2-1 also indicates that the selection of equal weights on
Av and Aw (and, therefore, on Aa and AB) drives the natural
frequencies and damping ratios of the short period and
Dutch roll to similar values.
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The DPSAS gain matrix for this flight condition is :
listed in Table 4.2-2. The gain matrix illustrates why damp- :
ing is increased in the closed-loop system; rate feedbacks
are large. The classical longitudinal/lateral-directional
partition can be observed in the gains; the control algo-
rithm actually computes coupling gains on the order of 10-7
due to the use of single-precision arithmetic.
can be ignored.

These gains
The elevator is seen to be the primary
longitudiral controller, as throttle feedback gains are smail
(the principal effect of throttle control is to damp the
phugoid mode). Lateral-directional control largely parti-
tions along the roll and yaw axes. Although the gains shown
in Table 4.2-2 have reasonable magnitudes, they could be
reduced by reducing the values of a4 (Eq. (A.4-21)). Tran-
sient response would be altered, but the system would remain

stable.

TABLE 4.2-2

DPSAS GAIN MATRIX AT THE CENTRAL
FLIGHT CONDITION

The performance of the linear-optimal regulator is

demonstrated by comparing open- and closed-loop response to

perturbations in angle of attack, sideslip angle, and roll rate.

Figure 4.2-1 illustrates that a 1.1-deg Aa pefturbation is
moderately damped without the regulator aid well-damped with
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Pitch Pody x-axif Pitch Pody z-axisBody y-axid Yaw Roll | Roll
Angle, | Velocity,| Rate, Veiceity, | Velocity, Rate, Rate, | Angle,
Control Cvtput deg m/s deg/sec m/a n/s deg /sec | deg/sec deg
Throttle Setting, | -0.019 0.069 |-0.008 0.020 (] [/} 0 0
Fraction of Full
Scale
:lovntor Angle, | -0.700} 1.323 |-1.8¢0 | -0.988 0 0 0 0 4
eg .
311.ron Angle, 0 [} [} (1] -0.509 0.138 2.540 1.804
g
:23"' Angle, 0 0 0 0 1.942 -3.096 0.228 |-0.100
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the regulator. Figure 4.2-2 shows that the lightly damped
natural motion resulting from a l-deg AB initial condition
creates a substantial amount of roll as well as yaw. The
regulator damps the oscillation and limits the roll angle
excursion to 20 percent of its open-loop value, providing
significant decoupling of lateral and directional motions,
This decoupling effect is confirmed by the aircraft's closed-
loop response to a roll-rate disturbance of 1 deg/sec (fig-
ure 4.2-3). This initial condition creates a small side-
slip oscillation and triggers the spiral mode (indicated by
the underlying exponential response trend in roll angle).
The regulator damps the oscillation, reduces the sideslip
response by 70 percent, and stabilizes the roll angle.

Having obtained a representative design point for
the DPSAS at the central flight condition, the effects of
maneuvering on control gains, aircraft stability, and t'me

response are examined in the next section.

4.3 DPSAS CONTROL LAWS

The control gains obtained at the central flight
condition would stabilize the aircraft for some range of
nominal angles and angular rates; however, changes in the
aircraft's dynamics (reflected by variations in F and G)
would lead to less-than-optimal regulation. It is neces-
sary, therefore, to redesign the control gain matrix at
each maneuvering condition in order to assess the full
vossibilities for preventing departure with the linear-
optimal control law,

Two separate maneuvering condition sweeps have been
conducted, using the reference aircraft flying at 6100 m
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and 94 m/s in both cases. The first is a longitudinal
sweep, in which a range of angles of attack and pitch rate
are considered. As indicated in Chapters 3 and 4, there is
a significant change in lateral-directional dynamics during
pullup maneuvers, although the longitudinal and lateral-
directional axes remain uncoupled. The lateral-directional
sweep varies sideslip angle and stability-axis roll rate,
introducing full coupling about all three axes. In the
first sweep, control gains and closed-loop characteristics
change, but the DPSAS structure is conventional, i.e., gains
are partitioned along usual lines. The second sweep generates
unconventional DPSAS structures as well as gain variationms.
(In both cases, the control law is described by Eq. (4.1-1).
K contains zero sub-matrices in the first sweep but not in

the second.)

4.3.1 Longitudinal Sweep

This section presents the effects of angle of attack
and pitch rate on closed-loop eigenvalues, DPSAS control gains,
and aircraft response. Section 2.4 showed that the reference
aircraft has an unstable Dutch roll mode at high %q and
unstable Dutch roll, roll, and spiral modes at high Q- These
conditions are stabilized by the DPSAS. Using the state
and coatrol weighting factors discussed in the previous sec-
tion, linear-optimal regulators are designed for 15 maneuver
conditions (ao varies from 5 to 25 deg, in 5-deg incirements,
and Qp is 0, 12, and 24 deg/sec). This sweep represents
relatively low load factors (nz==0.4 to 1.4 "g's"), it covers
the normal an range, and it exceeds the normal qqp range. Con-
sequently, these flight conditions do not literally repre-
sent coordinated pullup maneuvers, although they introduce
the same symmetric coupling terms in the F matrix (Eq. (A.3-4))
that occur in the pullup.
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Closed-loop stability at the 15 conditions is sum-
marized by Table 4.3-1, where it can be seen that all modes
are stable and at least moderately damped. Control power
does not change with g but it does change with aqs con-
sequently, the closed-loop stability at a given aq is rela-
tively independent of Qg - There is a gradual decrease in
Dutch roll damping as ag increases, and roll response
becomes more sluggish. This happens because rudder and
aileron are less effective at the higher angles, while the
elements of R which weight the cost of using these surfaces
remain unchanged. A heavily damped roll-spiral oscillatory
mode occurs at %4 of 20 and 25 deg. A coupled roll-spiral
mode can degrade handling qualities, so adjustment of

TABLE .4.3-1
CLOSED-LOOP STABILITY IN THE LONGITUDINAL SWEEP

Maneuver
Condition Short Pericod Dutch Roll Roll Spiral Phugoid
% qc' Wy [4 'Y g T, T, b 4
deg deg/sec rad/sec - rad/sec - sec Rec rad/sec -
5 0 2.43 0.71 1.90 0.52 | 0.14 1.18 5.54° 8.06"
12 2.43 0.69 1.9 0.53 | 0.14 1.23 43" 16.82°
24 2.44 0.67 2.02 0.55 | 0.14 1.32 ..es° 18.31°
10 0 2.60 0.72 1.94 0.57 | 0.17 1.44 0.17 0.95
12 2.60 0.71 1.99 0.58 | 0.17 1.20 2.36" 14.95°
24 2.60 0.69 2.08 0.59 | 0.17 1.30 1.60" 17.25°
15 0 2.67 0.72 2.35 0.69 | o0.36 1.07 0.16 0.99
12 2.67 0.7 2.42 0.67 | 0.37 1.17 2.m1° 19.28"
24 2.68 0.70 2.5 0.66 | 0.34 1.30 1.57" 21.18°
20 ) 3.72 0.72 2.95 0.57 | 1.08" | o0.97" 0.16 0.98
12 2.72 0.72 2.97 056 | o.83 | 1.08 2.22° 18.48°
24 2.72 0.71 3.00 0.55 | o.e6 1.24 1.50° 20.21"
23 0 2.75 0.62 2.22 0.40 | o.s0t | o.90 s.09" 9.58"
12 3.78 0.61 2.23 0.38 | o0.79% | o.93" 3.87° 67.57"
2 2.81 0.60 2.25 0.39 | o.78 | o.90* 1.79° 58.41°

2 Real Roots
$tRol1-Spiral
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Q and R could be necessary to eliminate this characteristic.

The normally oscillatory phugoid mode degenerates
into two real modes at most maneuvering conditions consid-
ered here. The over-damped phugoid mode may result from the
"'cost" associated with Au perturbations, which could be
relaxed in future DPSAS designs.

There are 16 non-trivial DPSAS gains generated for
the pullup maneuver. Scheduling of these gains is dis-
cyssed in Section 4.4, and 12 of the gains (four each for
elevator, aileron, and rudder) are presented here. Table
4.3-2 lists these gains for ag of 5, 15, and 25 deg and aq
of 0,.12, and 24 deg/sec. The first subscript of k indi-
cates the control effector (in the order used in Table 4.2-2)
and the second subscript indicates the feedback variable
(also ordered in Table 4.2-2).

Longitudinal Gains (k21 to k24l - The gains main-
tain an orderly progression with both aq and qq; none change
sign and most follow a single increasing or decreasing trend
with the two flight variables. Table 4.3-2 shows that the
pitch-rate gain (k23) is dominant at all maneuver conditions
and has a maximum variation of less than 25 percent, which
is representative of the variations of most gains at most
conditions.

Directional Gains (k45_to k4
tions in rudder gains can be expected with increasing 0g-
The fuselage blocks the flow over the vertical tail at high

A and the rudder side force transforms into stability

Sl - Svbstantial varia-

axis roll and yaw moments differently at different angles of
attack. Unlike the longitudinal gains, there is a dramatic
change in the directional gains as ag increases from 15 to
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25 deg (Table 4.3-2). The yaw gains (ky5
significant changes with both ag and a5- The roll-angl=

and k46) have
gain (k48) is noted to change sign as ay pProgresses from
9 to 15 deg, while the increased roll-rate gain (k47)

attempts to provide stability-axis yaw damping.

Lateral! Gains (kg. 1O kBBl - Trends in the aileron

gains alsoc have large variation with ag dve to geometric
transformation, loss of rudder effectiveness, and aileron
yaw effects. More gains change sign, and pitch rate has a

greater effect on gzain magnitude. There is an abrupt reduc-

tion in the use of aileron for roll control (k37 and k38)
at an aq of 25 deg, which is accompanied by increased aileron
use for yaw control (k35 and k36).

It was noted earlier that pitch rate destabilizes
the Dutch roll, roll, and spiral modes. The coupled nature
of this phenomenon has an interesting effect on the secondary
lateral-directional control paths, i.e., the yaw feedback to
the roll moment controller (and the converse), such as k35,
k36’ k47, and k48 at the lower angles of attack. These =ains
have as great or greater variation with dp as with the
change from 5- to 15-deg Gg which is not the case for the

primary control paths (yaw-to-rudder and.roll—to—aileron).

As in the previous section, the performauce of the
DPSAS in the pullup flight condition is assessed by compar-
ing open- and closed-loop time responses. Figurve 4.3-1
illustrates the aircraft's open~ and closed-lcop responses

to an initial sideslip perturbation when a,. is 15 deg and

0
qq is 12 deg/sec. The oscillation grows at a moderate rate
without stability augmentation but is damped in one cycle
with the control loops closed. At higher angle of attack

(25 deg) and the same pitch rate., the open-loop oscillation
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grows at a faster rate, and the closed-loop oscillation
takes two cycles to disappear (in keeping with the reduced
damping ratio of the Dutch roll mode).

4.3.2 Lateral-Directional Sweep

Nominal values of sideslip angle and stability-axis
roll rate are varied in this section, and their effects on
closed-loop eigenvalues, DPSAS control gains, and aircraft
response are presented. The development of this section
follows the previous section, although the results presented
for asymmetric flight are somewhat different from those of
the longitudinal sweep. The Q and R matrices are the same

as hefore, and linear-optimal regulators are desigaed at
18 points. Sideslip angles of 0, 5, and 10 deg are con-
sidered in combination with stability-axis roll rates of
0, $13, 226, and t39 deg/sec. (For a given sideslip angle,
roll rates of opposite sign have different dynamic effects.)
Angle of attack, velocity, and altitude are fixed at 15 deg,
94 m/s, and 6100 m, respectively. .
Table 4.3-3 presents the natural freauencies,
damping ratios, and time constants of the aircraft, with
the linear-optimal regulator loops cloused. The most strik-
ing result, in comparison with Table 4.3-1, is that the
lateral-directional closed-loop roots evidence relatively
little variation with maneuver condition. There are no
roll-spiral or phugoid degeneracies, and all parameters
stay within 40 percent of their mean values. Short period,
Dutch roll, and phugoid natural frequencies decrease with
increasing Bo magnitude and increase with increasing pr
magnitude. Roll time constant and damping of the short
period and phugoid modes are largely independent of BO
magnitude but decrease with Pwo magnitude. Dutch roll
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TABLE 4.3-3
CLOSED-LOOP STABILITY IN THE LATERAL-DIRECTIONAL SWEEP A
Maneuver
Condition Short Period Dutch Roll Roll | Spiral Phugoid
:g; dezyg;c ru:7;ec E: ra:?;ec i: ;éc ;éc razy;ec i: é
0 39 2,98 0.56 2.52 0.91 0.51 1.13 0.34 0.77
26 2.79 0.60 2.3% 0.84 0.40 1.09 0.26 0.80
13 3.64 0.66 2.40 0.78 0.37 1.07 0.19 0.89
0 2.687 0.72 2.35 0.69 0.36 1.07 0.18 0.99
5 -39 2.9% 0.58 2.48 0.93 0.52 1,07 0.35 0.77
-28 .79 0.61 2.28 0.85 0.38 1.06 0.27 0.78
-13 2.6% 0.66 2.35 0.76 0.36 1.08 0.20 0.87
0 2. 4 0.72 2.35 0.69 0.35 1.07 0.18 0.99
13 2.59 0.66 2.45 0.7% 0.3¢ 1.09 0.19 0.91
26 2.76 0.680 ? 19 0.83 0.38 1.14 0.26 0.81
39 2.92 0.56 2.51 G.90 0.46 1.22 0.34 0.78
10 -39 2.87 0.56 1.4 0.92 0.32 1.06 0.35 0.76
-28 2.Nn 0.62 2.06 0.83 0.31 1.0% 0.28 0.78
-13 2.60 0.69 2.18 0.73 0.30 1.06 0.20 0.88
0 2.63 0.73 2.18 0.67 0.30 1.08 0.16 0.v9
13 2.50 0.71 2.31 0.70 0.31 1.1 0.19 0.92
26 2,65 0.61 2.25 0.81 0.32 1.18 0.27 0.52
39 2.82 0.56 2.21 0.89 0.34 1.30 0.35 0.79

damping increases with Pwo magnitude and is little affected
by Bo. The spiral mode time constant increases with Py,
magnitude, although its minimum value occurs at more nega-
tive pwo as BO increases.

Examples of the DPSAS gain variations with sideslip
angle and roll rate are plotted in Fig. 4.3-2 and 4.3-3.
The most apparent trend is that primary gains, i.e., those
which would be non-zero in symmetric flight, chanrge very
little with B, and Py, while crossfeed gains have sub-
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stantial variation with maneuver condition. The standard
deviation of each gain, computed over the 18 literal-
directional sweep conditions, is an indication of its
variation from a constant value. The average standard
deviation for the primary gains is 16 percent, and for the
crossfeed gains it is 422 percent. As discussed in Sec-
tion 4.6, this is a first indication of gain-scheduling
requirements, suggesting that many primary gains are nearly
constant and that most secondary gains must be scheduled
(unless they are negligible).

Gain variations are seen to depend on whether the
vehicle is sideslipped "into" or "out of" the roll. (The
vehicle is sideslipped into the roll when BO and Prg have
opposite sign, e.g., when the nose is left and the left
wing is moving down; it is sideslipped out of the roll when
the Signs are equal.) Figures 4.3-2 and 4.3-3 illustrate
gain variations for positive 80 only; for negative BO’ the
variations with Pyo 2re changed. The graphs of primary
gains for negative 80 are mirror images of those for posi-
tive BO (Fig. 4.3-2). The graphs of crossfeed gains for
negative BO shift up or down, in opposition to the BO trend
shown in Fig. 4.2-3 Primary gains can be monotonic or
convex functions of pwo; crossfeed gains are monotonic in
Pwo and always pass through zero when both Bo and pwo
are zero (Gains for symmetrin flight are inidcated by '$"
in Fig. 4.3-3). o

The crossfeed gains are shown to be non-trivial for
even moderate values of BO and pWO’ and those shown in Fig.
4,3-3 can be interpreted as nonlinear control elements.

Note that each gain could be approximated by a function of
the form

Gaia = clso + CoP (4.3-1)

L)
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where ¢y and c, are appropriate constants. Then the con-
trol signals represented by these four graphs would be

Aéh = clsoAr + czpwoAr (4.3-2)
. As, = CqBpa + c4pwoAq (4.3-3)
Adr = 0580A9 t c6pw0A9 (4.3-4)
AGa = c780Aw + csprAw (4.3-5)

where the constants are derived bv recression analysis
(Section 4.6). The prAw and prA? terms can be recognized
as analogous to so-called "pseudo-8" or '"pa'" crossfeeds, which
have been incorporated in the SAS of modern high-performance
aircraft. (An aaditional '"pa'-type primary gain is indi-
cated in Table 4.3-2. The roll rate-to-rudder gain could be
approximated by cay; therefore, the associated rudder com-
mand would be caOAp.) Nonlinearities in the curves of Fig.
4.3-3 suggest that higher-order fits than Eq. (4.3-1) to
(4.3-5) are required if design performance is to be obtained
over a wide range of 80 and Py g -

Examples of open- and closed-loop response at two
asymmetric flight conditions are shown in the next two fig-
ures. Figures 4.3-4 and 4.3-5 show that roll rate intro-
duces substantial longitudinal response to a directional
input and that the addition of sideslip angle leads to
qualitative changes in response shapes. Roll rate alone
introduces regular oscillatioas in the aircraft's open-1loop
response (Fig. 4.3-4). The DPSAS damps the oscillation
within 1% cycles, although excitation of the phurgoid mode
leads to a slow decay in Aa (The effective time constant
(-Cwn) of theaphugoid is 6 sec at this flight condition).
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When the aircraft has developed a large mean side-
slip angle as well as roll rate, the open-loop perturba-
tion motions tend to meander, as several modes are involved
in each motion (Fig. 4.3-5). For example, the initial Aa
appears to be damping out, but after 5 sec, it begins to
wander. Pitch and roll angle develop offsets which are
continuing to increase at the end of the time period shown.
The DPSAS restricts the maximum initial excursions of A8,
Ad, and AB to less than half their open-loop values and
eliminates the meandering characteristic.

Plotting B rather than A8 in Fig. 4.3-5 is a
reminder that the DPSAS provides stab.lity about a refer-
ence flight condition, in this case, 10-deg sideslip angle
and -39.6-deg/sec roll rate. With the assumption that

these values are commanded by the pilot, it can be seen that
the DPSAS does not limit aircraft maneuverability -- in fact,

it expands the flight envelope by stabilizing the aircraft
in conditions which could not be controlled by the unaided
pilot. Although non-zero 80 is not normally desired in
maneuvering current high-performance aircraft, future air-
craft, particularly those with direct side force control,
could use this capability to tactical advantage.

This section has presented linear-optimal DPSAS
designs for the reference aircraft and for a variety of
maneuvering conditions. The next section of this chapter

demronstrates how control gains can be adapted to flight con-

dition.
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4.4 CONTROL-LAW ADAPTATION FOR VARYING FLIGHT CONDITIONS

This secticn presents results for a procedure which
adapts the control gains of a high-performance aircraft to
varyiug flight conditions, including gain correlations for
the reference aircraft model. The gains are scheduled by
finding functional relationships between aircraft flight
variables aand the control gains at the corresponding flight
conditions.

Previous methods for scheduling control gains have
been successful and indicate that gain scheduling is a
sound approach. The methodology typically is based on
single input/single output concepts, e.g., maintaining
constant loop gain. These previous methods, however, pro-
vide inadequate insight for scheduling a multivariable
system.

The method is a logical extension of previous work
to multivariable systems. It involves three steps, and
it places minimum reliance on past experience and intuition.
The three steps are:

° The determination of means and stand-
ard deviations of the control system
gains.,

° The determination of correlation
coefficients between gains and flight
variables.

e The determination of functional re-
lationships (or curve fits) between
the chosen flight variables and the
gains,

This new gain scheduling procedure, discussed in Section A.4.5,

112

o



e

-
s «P.Q‘M“

-

A H R R B et b e
. .

is simple to use, the results are easy to implement on a
digital computer, and the procedure can have brosd appli-
cation.

The longitudinal and lateral-directional sweep
control gains discussed in Section 4.3 have been correlated
with a number of flight variables. 1In order to identify the
individual effects of longitudinal and lateral~directional
mean motions, the correlations for each sweep are done
separately. In a flight system, the gains should be cor-
related jcintly, wnd additional factors -- such as weight,
altitude, and velocity -- must be considered.

For each sweep, a list of candidate independent
variables is established, and various functions of their
variables are correlated with the 32 gains associated with
each flignht condition. Functions considered inzluded poly-
nomials of order ome and two,

Gain

) 4.4-1
b0+bﬂ1 ( )

. 2 4.4-2
Gain b0 + blm + b2m ( )

and linear regressions in two variables,

Gain = b0-+b1m1-+b2m2 (4.4-3)

Given a flight variable, y, independent variables, m, of

the forn vy, y2, 1l/y, 1/y2, and y|y| are considered in the
polynomial regressions. Equation (4.4-3) is uvsed with

my =¥, and m, =Vg- The objective of the computations is to
find the functional approximation to each gain which has the
greatest correlation with the linear-optimal gain at all
conditions in the particular sweep. In many cases, alter-
nate functions have similar correlation coefficients, so

more than one schedule could be considered in implementation.
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The correlation between gains also is of interest,
as it suggests which gains can be scheduled as functicns of
other gains, and it helps to identify control interconnects.

This correlation can be computed, using Eq. (A.4-37), by
defining the first gain as k and the second as k. The
following results indicate that an aileron-rudder inter-
connect could be considered for the stability augmentation
system of the reference aircraft.

4.4.1 Longitudinal Sweep

The procedure followed in establishing gain-sched-
uling requirements is to compute means and standard devia-
tions (as percentages of the means) of tae gains, to corre-
late gains with flight variable functions, and to corre-
late gains with other gains. Sixteen crossfeed gains are
identically zero, leaving sixteen gains for scheduling.

Table 4.4~1 summarizes the findings for DPSAS
gains in the loagitudinal sweep, presenting the mean and
standard deviation of each gain. The independent variables
which provide the best gain schedule are listed, along with

the correlation between the actual and scheduled gain values.

Also listed is the gain which exhibits the highest cross-
correlation, (calculated by applying Eq. (A.4-37) to all
pairs of gains) and the value of that cross-correlation.
For example, the gain AGT/AG exhibits a mean of -0,016 and
a standard deviation of 32% over the chosen set of longi-
tudinal flight conditions. A gain schedule using normal
load factor (nZO) and pitch rate (qo) produces a scheduled
gain whose correlation factor with the actual gain is 0.89.
Finally, AGT/Ae exhibits strongest cross-correlation with
AGT/ u, and the correlation factor is 0.98. The flight
variables considered as possible scheduling variables are
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TABLE 4.4-1
GAIN CORRELATIONS FOR THE LONGITUDINAL SWEEP
° Longitudinal Gains
Gain ACT/AG AGT/Au AGT/Aq AGT/AW Aéh/Ae Adhléu Aéh/Aq Aéh/Aw

Mean of Gain -0.016| 0.062]-0.006| 0.0131-0.763| 1.640|-1.621]-0.928
Standard Deviation
of Gain, % of Mean 32 16 18 54 17 20 6 26
Best Scheduling "
Variables ny, Q n,, q| m,, 9| ng, q| nz, q| nz, q| cos a| cos a
Scheduled/Actual

Gain Correlation 0.89 0.93 0.95 0.95 0.85 0.94 0.88 .89

Gain of Highest
Cross Correlation AGT/Au AGT/AG AGh/Au Adh/Aq Aéh/Aq AGT/Aq Aﬁa/Ar ASa/A¢

Gain Cross
Correlation 0.98 0.98 J.o1 0.89 0.84 0.91 0.92 0.94

lLateral Gains

Gain Aéa/Av 86, /84r Aéa/Ap Aéa/A¢ AS./Av AS /oriAs /Ap A6 /Bd :
Mean of Gain -0.446] 0.076 |2.054 1.764} 2.480(|-3.567| 0.404|-0.206
Standard Deviation |
of Gain, % of Mean 251 1713 50 40 50 32 60 111 '
Best Scheduling
Variables COS O COS u|cos a COS a} CcOs a} COsS a Ny nz,q
Scheduled/Actual

Gain Correlation 0.93 {0.83 0.82 0.90 0.93 0.91 0.94 0.98

Gain of llighest
Cross Correlation Aéa/A¢ Aéa/A¢ Aér/Ar Aér/Ar Aér/Ar Aér/Av Adh/Aw AGT/Au

Gain Cross
Correiation 0.94 {0.98 0.98 0.99 1.00 1.00 0.89 0.90

*A11l independent variables evaluated at nominal flight condition,
0" subscript omitted.
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angle of attack (a,). pitch rate (qo). normal load factor
(nZO), sinao, and cosoa . This set of independent variables
includes those actually varied (ao and qo) and some likely
functions <f them, and it serves to illustrate the DPSAS gain
scheduling procedure.

The only gain which is reasonably constant in
Table 4.4-1 is AGh/Aq, the pitch rate-to-elevator gain, as
its standard deviation is just 6 percent of the mean value.
As is the case for all gains which are most highly corre-
lated with cos %q > the best functional fit is given by

. 2 4
Gain = b0-+b1/cos ao-+b2/cos ag (4.4-4)

The roll rate-to-rudder gain, Aér/Ap, is best approximated
by a polynomial in load factor,

n2 + b 4

+ b1 ZO

Gain bO o
and the remaining gains are ''best" fit by linear functions
of nz, and - This is not to say that alternate functionms,
e.g., nZO and qg» would not be better. These correlations
are "best" for the independent variables and functions con-
sidered, and the average correlation with actual gain values

is over 0.9.

All gains have a correlation greater than 0.89 with
at least one other gain except Aéh/Ae, which has a corre-
lation above 0.8 with several gains. The suitability of a
SAS aileron-rudder interconnect is evaluated by noting the
correlation between the aileron and rudder gains for each
feedback variable (Av, Ar, Ap, and A¢). The correlations
(not necessarily the maximums, and not necessarily in the
table) are 9.93(Av), 0.95(Ar), 0.83(Ap), and 0.70(A¢), indi-
cating a good possibility for combining Av and Ar feedbacks
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with little performance degradation, and a moderate possi-

bility for combining Ap and A¢ feedbacks as well.

4.4.2 Lateral-Directional Sweep

Correlation results for the lateral-directional
sweep are shown in Table 4.4-2 which indicates that no gain
means are identically zero, although several appear neglig-
ible. The flight variables considered for scheduling are
sideslip‘angle (BO) and stability-axis roll rate (pwo), which
are chosen to illustrate the DPSAS gain scheduling method.

In an actual application, additional independent variables
could be included in the search.

Unlike the longitudinal sweep, it appears that 13
gains cculd be crnsidered constant, with standard)deviations
of less than 8 percent of the mean value. Five gains are in-
adequately scheduled by the chosen independent variables and
functions, as their correlations are below 0.75. Two of these
are the rudder gains shown in Fig. 4.3-2, which can be seen to
be more complex than the polynomials and linear combination
considered here. Higher-order curves would fit these gains,
although they are candidates for the const?nt-value approxi-

mation because their standard deviations are low.

Seventeen gains are most closely correlated with

pwo and are fitted best by second-order polynomials in pwo.
The eleven gains which are most correlated with BO ;re fitted
almost as well by second-order polynomials in BO’ BO, 1/80,
1/83, or 80|80i. Three of the four linear B,-py, fits are
adequate, with AS./Ar requiring an improved fit (along with
ASa/Aw, Aéa/Av, Aéa/Ar, and Aér/Av). Most pairs have strong
correlation with at least one other gain. The correlations

associated with SAS aileron-rudder interconnect are 0.95(Av),
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0.50(Ar), 0.13(4Ap), and 0.04(A¢), indicating that either
rudder or aileron would require additional Ar and Ap feed-
backs in parallel with the interconnected control path.

4.4.3 Additional Considerations

The longitudinal and lateral-directional sweeps were
conducted to illustrate the separate effects of a9, dp: BO’
and Pyg ©On DPSAS gains. Furthermore, a limited set of in-
dependent variables and scheduling functions were examined.
At a minimum, these sweeps should be combined in a single
correlation procedure to obtain a single multi-variable
schedule for each gain. Altitude, velocity, and weight
effects should be added, principally through indicated air-
speed, Mach number, and the ratio of weight-to-dynamic
pressure. Permutations of the independent variables, e.g.,
body-axis rather than stability-axis rates, may provide
better correlation or may be easier to implement in a par-
ticular system.

The present results suggest that primary gains
schedule largely on longitudinal variables and that cross-

feed gains schedule primarily on lateral-directional vari-

ables. This observation derives from the fact that most

primary DPSAS gains are nearly constant as BO and Py
change, while crossfeed gains are zero in symmetric flight.
Any approximations made in gain scheduling must be validated
by direct simulation, as this is tantamount to changing

the gains from their linear-optimal values, thus altering
closed-1loop response.

An entirely separate issue is the on-board deter-
mination (either through measurement or estimation) of the
independent variables to be used for gain scheduling --
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particularly g and 80, which are notably difficult to
measure. Two potential problems are inaccurate steady-
stute measurement, which leads to inaccurate calculation of
gains, and superposition of perturbations on the mean values,
which could cause longitudinal mnotions to drive lateral-
directional métions (and vice versa) through oscillatory
gain changes. The solution to both problems, should they
occur, is found through state estimation, which allows all
available measurements to be blended in a unified estimate
of nominal and perturtation motion variables (Ref. 63). As

an example, measurements of a, q, n,, airspeed, and Gb
could be used to estimate a5, g Aa, and Aq. If the DPSAS

is incorporated in a full command augmentation system, pilot

commands could be direct indicators of the desired (or nominal)
state; therefore, they could be used for gain scheduling
(Ref. 58). This is a tcpic for further study.

4.5 CHAPTER SUMMARY

This chapter has presented design principles for
stability augmentation systems (DPSAS) which prevent depar-
ture from controlled flight. Linear-optimal control theory
has been used to develop control structures for departure
prevention, and the effects of maneuvering condition on
optimal feedback and crossfeed gains have been explored.
Examples of aircraft response to longitudinal, lateral, and
directional initial conditions illustrate the well-controlled
behavior which the DPSAS provides, and closed-loop eigenvalues
show that variation in aircraft dynamic characteristics is
minimized for a wide range of maneuvering conditions.

In many respects, stabilizing the reference aircraft
in a pullup maneuver is a more challenging task than accounting
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for the coupling which results from sideslip and roll rate;
however, lateral-directional maneuvering results in signifi-
cant linear-optimal gains which improve aircraft response,
In combination with gain-scheduling functions which depend
on mean values of angles and angular rates, the DPSAS con-
trol algorithms are seen to produce nonlinear crossfeeds
which are analogous to control structures being employed

in modern high-performance aircraft.

Linear-optimal control theory solves many aircraft
control problems which have been difficult to overcome with
past design techniques. It is easy to use, it guarantees
system ;tability. and it accomaodates aircraft with limited
control authority.
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5. CONCLUSIONS AND RECOMMENDATIONS

This report has illustratec how linear systems
analysis can be used to characterize the stability of air-
craft during maneuvering flight. It also presents a design
procedure for stability augmentation systems which prevent
departure from controlled flight. The key to linearizing

the dynamics of the aircraft is that an accelerated flight

condition can be used as a reference path. A linear model

can provide a good description of the aircraft's perturbation
response (to initial conditions, control inputs, and dis-
turbances) even when the aircraft has large aerodynamic angles
and fngular rates. dJControl systems designed for fully

coupled linear models and adapied to changing flight con-
ditions can provide protection 2gainst inadvertent depar-

ture from controlled flight.

5.1 CONCLUSIONS

A destailed examination of the dynamics of the ref-
erence aircraft has led to =zeneralizations concerning air-
craft stability and control. These include the following:

® The aircraft's stability (as shown by its
eigenvalues) is most affected by changes
in the nominal longitudinal variables
(VO, 2y and qo), while the mode shapes

(as described by the aircraft eigenvectors)
are most affected by non-zero nominal
values of the lateral variables (8(; and
pr). Asymmetric flight leads to iongi-

tudinal~variable response in typically
lateral-directional modes, and vice-versa.
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Nonminimum-phase zeros in the aircraft
transfer functions occur frequently in
asymmetric flight, and the transter
function numerators are changed sub-
stantially by non-zero aq-

Exireme maneuvers are often characterized
by rapid changes in both mode slapes and
speeds due to0 large values of ag, pwo,

and qg. Highly coupled, unstable natural
modes can result.

Elementary loop closures which are sta-
bilizing in symmetric flight can lead to
unstable system dynamics in asymmetric
flight.

The departure parameter, has

C“den’
limited value ian predicting aircraft
departure. It provides no information
regarding Dutch roll damping; hence, it
does not predict departure due to nega-
tive damping (as is the case for the
subject aircraft).

Unforced departures occur when one of

the fast modes (short period, Dutch roll,
or roll mode) 1s unstable. These depart-
ures primarily take the form of a Dutch
roll instability, with fast rolling-yawing
motions or oscillatory divergence. The
roll mode can become unstable at extreme
angles, where it exhibits a fast roll-

yaw divergence.

Forced departures occur as a result of

roviswere S i

pilot action. This can happen when de-
graded response to control inputs causes
the pilot to fly the aircraft into a
flight regime where unforced departures
are likely or when pilot actions de-
stabilize the aircraft directly.

Guidelines for the design of Departure-
Prevention Stability Augmentation Sys-
tems (DPSAS) have been presented. An
adaptive-control decign procedure, using
the linear-optimal regulator for
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fixed-point design followed by gain
scheduling, is shown to provide a non-
linear control structure containing
crossfeeds as well as feedback gains.
The resulting DPSAS has similarities
to- the flight control systems of cur-
rent high-performance aircruft. How-~
ever, the new design is based on '"quad-
ratic synthesis" techniques, which
provide a unified set of control gains
for all axes from a single set of
vector-matrix design equations.

The linear-optimal DPSAS prevents departure
not by limiting the maneuvering ability of
the aircraft but by stabilizing the air-
craft in all foreseeable maneuver conditions.

The linear-optimal control law can be readily
extended to a full Departure-Prevention
Command Augmentation System (DPCAS) which
accounts for control actuator rate limits

and allows essentially unlimited pilot con-
trol authority (within che physical limi-
tations of the aircraft).

The maneuverability envelope of the subject
aircraft could be materially expanded through
the incorporation of DPSAS/DPCAS concepts,

as identified in this report.

RECOMMENDATIONS

The following recommendations are made as a result
of this study:

Departure prevention studies for high-

performance aircraft should be extended
to transonic and supersonic flight re-

gimes.

The high angle-of-attack/high angular
rate problems of additional aircraft
types, including trausports, helsicop-
ters, and general aviation aircraft,
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are amenable to coupled linear analy-
sis and bear investigation. /

) Design requirements for a DPCAS should be
investigated. Digital implementation and
incorporation of active control concepts
for improved maneuverability should be
considered.

) It is recommendaed that improvements to the
subject aircraft's maneuverability envelope
due to DPSAS/DPCAS implementation be explored
in ground-based piloted simulation and flight
test.

Dynamic coupling is a significant factor in the
maneuvers of high-performance aircraft, and a full under-
standing of its effects is an important facet of preventing
departure from controlled flight. This report has shown
how linear models of the aircraft's motions can be used to
investigate the stability and control of maneuvering flight,
and it has demonstrated the flexibility and ease with which
linear-optimal control theory can be used to design departure-
preventing control systems.
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APPENDIX A

ANALYTICAL APPROACH TO AIRCRAFT DYNAMICS

A. 1l OVERVIEW

This appendix develcps the analytical approach taken
in this report. The goal of this work is to analyze the air-
craft stability and control problems that arise at high
angles of attack and during rapid maneuvers. The nonlinear
equations of motion of a vehicle in atmospheric flight are

developed in Section A.2. A large body of theory and experi-

ence relating to linear system analysis and control synthesis
exists (Ref. 64 to 67) yet a full and complete linearization of
the aircraft problem is not readily available; therefore, a
rigorous application of linear analysis should provide new
insights regarding departure. Section A.3 presents the full

linearized equations of motion in a general form, and it
includes a discussion of methods for choosing the point of
linearization. Section A.4 presents an overview of linear

system analysis and control methods.

A

A.2 NONLINEAR EQUATIONS OF MOTION

The complete nonlinear rigid-body equations of
motion are derived in this section. They are developed using
"flat-earth" assumptions, i.e. the effects of earth curva-
ture and rotation are assumed negligible. This means that

earth-fixed and inertial reference frames are equivalent.
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There are four coordinate systems of interest in
the study of rigid-body motions of aerodynamic vehicles.
They are described as follows:

° Inertial-Axis System - This frame is
fixed in inertial space, and is the
frame from which the inertial velocity
and angular ra:e of the vehicle are
measured.

° Body~Axis System - The forces and
moments on the vehicle, and there-
fore the dynamic equations, are best
expressed in a body-fixed reference
frame. The stability-axis system is a
special body-fixed reference frame.

o Velocity~-Axis System - An especially
useful reference frame for navigation
and guidance, the velocity-axis system
relates the vehicle velocity vector to
inertial axes.

° Wind-Axis System - Since the aerodynamic
forces and moments depend largely on the
body-velocity vector orientation, the
wind-axis system, which provides straight-
forward body-wind relations, is useful.

For the moderite velocities of interest in this
report (typically subsonic, i.e., below about 340 m/s),
the equivalence of earth-fixed and inertial reference
frames is a good assumption. The origin of the in-
ertial reference frame used here is located on the sur-
face of the earth, with the x-, y-, and z-axes in a north-
east-down orientation. Since the simplest statement of
Netwon's Second Law is given in an inertial reference
frame, this frame plavs an important nart in the derivation

of the drnamic equations.

The various body-fixed axis systems have a common

origin, located at the body center of mass, snd are fixed
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in orientation with respect to the vehicle. Generally, the
body x-axis extends forward out the vehicle's nose, the
y-axis extends out the right wing and the z-axis extends out
the bottom of the vehicle. The x-z plane is usually a plane
of geometric symmetry, if the vehicle has one. There are a
number of possible body-fixed reference frames, and the one
fixed by the builder is simply referred to in this report

as the body-axis system. For any nominal flight condition,
body-fixed axes can be chosen so that the x-axis is aligned
with the velocity vector, and the z-axis is in the body
axis x-z plane. This set of body-fixed axes is referred to

as the stability-axis system.

Since body axes are the only axes in which the
vehicle rotational inertia matrix is constant, the rotational
dynamics equations are usually (though not exclusively)
expressed in this frame. The body frame also is the one in
which the pilot, and all sensors and control surfaces are
located; for this reason, the body frame is considered the
basic frame of reference in this report. Figure A.2-1la
illustrates the body frame orientation with respect to the

inertial-axis system,

The velocity- and wind- axis systems have a common
origin (the vehicle center of mass) and a common x-axis,
which is oriented along the vehicle's inertial velocity vec-
tor. The velocity refterence frame y-axis is parallel to the
inertial x-y plane. This results in simple relations be-
tween inertial and velocity axes, so that these axes are
useful for navigation and point-mass trajectory calcula-
tions. Figure A.2-1b illustrates the relationship between

inertial and velocity axes.

The wind reference frame's z-axis is located in
the X-z plane of the body frame,; this reference frame is
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¢c) Wind-Body Orientation

Figure A.2-1 Reference Frame Relations
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very useful in dynamic calculations because the orientation
angles between the wind frame and body frame have large
influences on the aerodynamic forces and moments. Figure
A.2-1c illustrates the orientation between body and wind
axes. Figure A.2-2 summarizes the transformations between
reference frames. Any necessary transformation can be
identfied from this figure, noting that the Euler angles
are given in the order of yaw, pitch, and roll, as speci-

RS R VE -0

fied by the arrows. For example, a transformation from
inertial to body-axes is composed of a right-handed yaw
through an angle, ¥, then a right-handed pitch through

an angle, 6, and then a right-handed roll through an angle,
¢. These three single-angle transformations can be com-
bined to form an inertial-body transformation as follows:

B _ B 2 1

1 0 0 fcosé 0 -sin8fcosy siny O
=0 cos¢ sing 0 1 0 -siny cosy O
0 -sin¢ cosd )isind O cosé 0 0 1
(A.2-1)

For orthogonal matrices such as these, the matrix inverse,
( )-1, is equal to the transpose, ( )T. \

In the remainder of Section A.2, the vehicle's
equation of motion is derived as a single state-vector

equation of the form,
x = £(x,1) (A.2-2)

where x is the state vector, u is the control vector, f is
the vector system dynamics equation, and disturbances are
neglected. The state vector is a 12-element vector, and

the nonlinear state equations are readily derived as four
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The kinematic equations relate the vehicle's translational
and rotational velocities to its position in inertial space,
and they involve body-axis/inertial-axis relationships. The
dynamic equations describe the changes of the vehicle veloc-
ities caused by the applied forces and moments; they are best
derived in a body-fixed frame of reference.

A.2.1 Kinematics

Kinematics is the study of the motion of a body
without regard to the forces which cause that motion. 1In
this section, the relations between the vehicle's position
and velocity are examined. The translational and angular
position of the vehicle are given relative to inertial space
by the inertial position vector, Xy, and by the inertial-
body Euler angle vector, vg'

f'xI
x; = | vy (A.2-3)

2]

K
v, = | 8 (A.2-4)

It is important to note that the Euler angle ''vector'" is not
a *“rue vector in physical space; it is an ordered triple (f
right-handed rotations which occur about different axes of

different reference frames.

The translational and angular rate vectors are

often expressed in body axes, as in the following:
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Eq. (A.2-8), where the individual transformations are the L
~ same as those of Fig. A.2-2 and Eq. (A.2-1):
é 0 . 0
B .
wg = |0+ By |8+ HJH] °
0 0 ]
= Ly by _ (A.2-8)

u]
vg = |v (A.2-5) )
-w-
p]
9; =la (A.2-6)
LT

Tﬂé body-axis translational rate vector, vy, is an expression,
in body axes, of the derivative of the inertial position vec-
tor. This relationship supplies the first part of the non-
linear state equations of motidn:

I o ‘
= A.2-7
%y = Hy vy ( )
where H; is the inverse of the inertial-body transformation
derived in Eq. (A.2-1).

The body angular rate vector also can be related to
the derivative of the Euler angle vector by noting that the
Euler angle derivatives occur in three different reference
frames. The resulting transformation is constructed in

The non-orthogonal transformation, LB, is

1 0 . =8iné@
Ly = [0 cosé sin¢cosb (A.2-9)
0 -sin¢ cosocosd
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The ordering of the transformations in Eq. (A.2-8) arises
from the ordering of the Euler angles. As can be seen from
Fig. A.2-1a, the.angular rate, ¢, occurs about the Xg axis,
while the rate, 8, occurs about the y2 axis, and Yy occurs
about the zq axis. The inverse of Eq. (A.2-8) supplies the
rotational kinematic part of the vehicle nonlinear state
equations, and is given by:

Y, = Lo w (A.2-10)

The relations between translational position and velocity,
Eq. (A.2-7), and between angular orientation and velocity,
Eq. (A.2-10), comprise the kinematic portions of the non-

linear state equations.

A.2.2 Dynamics

The dynamics of the vehicle involve the interaction
between the vehicle motion and the forces that produce that
motion. This involves tne application of Newton's Second
Law, which equates the applied force to the time derivative
of inertial translational momentum of a body. For rota-
tional motion, this equivalence becomes one between torque
and the derivative of angular momentum, measured in an inertial

reference frame.

An expression for the inertial translational accel-
eration, expressed in body-axis variables, is needed.
This can be derived from Eq. (A.2-7) by taking the darivative
of both sides. It is important to note that the transforma-
tion matrix is time-varying. This result is
s 1

IG + H,v

X; = Hpvp 8V (A.2-11)

134



e
i

e e

T

ageh

Ric. L St TR R v Ty

- g R S g ERE

where

B 9g (A.2-12)

r0 -r q
~1
wg = r 0 -p (A.2-13)
-q » O
This leads to the body-axis equation,
. B ~1
Vg * HIXI - Wg¥p . (A.2-14;

The applied specific forces consist of gravita-

tional forces and aerodynamic forces. The gravity force is

especially simple in inertial axes, as it is confined to the
vertical axis:

(A.2-15)

The specific contact force can be broken into two components,

one of which is due to aerodynamic forces and one of which is
due to thrust:

X/m
Fg/m = [Y/m (A.2-18)
Z/m .
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TBy/m (A.2-17)

(Capital letters are conventionally used in aerodynamics to
denote the force components.)

The translational dynamic equation is formed by
equating the sum of the aerodynamic and gravitational spe-
cific forces to the inertial translational acceleration of
the vehicle. When all vectors are expressed in body axes
and the derivatives of the body-axis velocities are iso-
lated on the left-hand side, the vector equation is

o B ~I
Vg = (Eg+Tg)/m+Hig; -Upvy (A.2-18)

To construct the rotational dynamic equation, an
expression for the time derivative of angular momentum mea-
sured in inertial axes is necessary. The angular momentum,
By,
ing machinery, it is the product of the moment-of-inertia

is most easily expressed in body axes; neglecting rotat-

matrix (constant in bodyv axes) and the angular rate vector,

- I 2-16
hy = Tp up (4.2-19)

where the inertia matrix contains all products and moments
of inertia:

I¢ 'Ixy -Ixzq
Ig = |-Ixy Iy ~1yz (4.2-20)
_'Ixz _Iyz I
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The time derivative of the angular momentum, expressed in
inertial axes, is easily derived by notiﬁg that the trans-
formation Hé is time-varying:

wI
B-B

ol I uI 'I
EI = HBIBQB + HBI

1, .1, 1.1, I
= Hplpip * Hpiplpup (4.2-21)

The contact moments consist of aerodynamic and
thrust components. These are defined as

(L
Mp = | M (A.2-22)
_N
-GB
X
Gy = GBy] (A.2-23)
LGB:"J

(Capital letters are conventionally used for the moment
components.) The rotational dynamic equation can be formed
by equating the applied torques to the derivative of the
angular momentum. All vectors are expressed i:: body axes,
and the derivative of body-axis angular rate is isolated

on the left-hand side of the equation, resulting in

-1.1 I

.1
B “BlB“B

-1
wp = Tg"(Mg+Gp) - 1 (A.2-24)

A.2.3 Summary of Equations

Section A.2 has presented the various reference
frames of interest and has deiived the equatione of motion
of an atmospheric vehicle. The 12-element state vector con-
sists of three positions, three angular orientations, three
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translational rates and three angular rates. The state
equations were found by examining the translational and
rotational kinematics and dynamics, and are repeated here:

2 = By vg (A.2-25)
g = Lp’ g (A.2-26)
95 = (Pg+Tg)/m+Hog - dgvy (A.2-27)
.@; = 11_;1(!3+§B) -1516113139_113 (.A.2-28)

These equations fall into the general state equa-
tion form,

x = £(x,u) (A.2-29)

by defining the state vector as

T
x = [s’f vy vp vl ] (A.2-30)

and noting that the aerodynamic forces and moments are func-
tions of the states, controls, disturbances and, to some
extent, the state time history. These nonlinear state equa-
tions are useful because they are general enough to allow a
thorough analysis of the departure prevention problem. They
are expressed in state-space form, which is notationally
efficient and which makes the subsequent linearization an
easily followed process.

A.3 T.INEAR EQUATIONS OF MOTION

While the nonlinear equations derived in the pre--
vious section can be solved on a digital computer, they are
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not easily analyred by general techniques, and general
closed-form solutions cannot be obtained. Many of the im-
portant dynamic attributes of the aircraft can be pre-
served and the analysis facilitated by developing cor-

responding linearized equations of motion, as is done in

Refs. 64 to 67.

A.3.1 Derivation from Nonlinear Equations

The linearization procedure begins with the con-
struction of a Taylor series expansion representing the

nonlinear equations about some nominal trajectory:

£

X = x5t8% = £(x5,u4) Au + Higher Order Terms

(A.3-1)

where the subscript "0" indicates tne nominal value and the
prefix "A" denotes a small perturbation. All except first-
order terms are then neglected by arguing that the higher-
order terms are small compared to linear terms. The results
of this procedure are separatzd into a nonlinear equation
describing the nominal trajectory (Eq. (A.3-2)) and a linear
equation defining the dynamics of the perturbations about

the nominal trajectory (Eq. (A.3-3):

o = L(x45,44) (A.3-2)

o>
w
I

=F 6x + G Au (A.3-3)
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where
of
F = — (A.3-4)
LE'] [—
.
u=u,
and
5L (A.3-5)
G = E .
= X=X0
u=u,

The linearization is straightforward because the
nonlinear state equations (Eq. (A.2-25) to A.2-28))are spe-
cified in a general state-space format. Equations for the
perturbations of the axis transformations are easily derived
by taking the partial derivatives of each transformation with
respect to the Euler angles of that transformation and mul-
tiplying by the Euler angle perturbations. For the inertial-
body transformation and its inverse, these transformation
perturbations can be stated as follows:

B

~ B
AHI = -AuB HIO (A.3-6)
where the cross-product operator ( ) is employed,
AHB = LBo AXB (A.3-7)
and
AHI = HI A
B~ B, ;] (A.3-8)

These relationships for the transformation perturba-
tions are used to linearize the translational kinematic
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equation, Ed. (A,2-25), to give

’ 1 I
= A.3-9
AxI (x B LB0 AVB-+HBO AVB ( )

0

This equation clearly shows that the perturbation inertial
ve}ocity depends both on the perturbation body-axis velocity
and the inertial-body Euler angle perturbations.

The rotational kinematic equation, Eq. (A.2-26),
results in the following linear perturbation equation:

. _ -1 . -1 I
ABB = -~ LB LB AEB + LB AQB (A.3-10)
0 0 0
where
N 1¢ ME
L B B (A.3-11)
BO BEB
VL=V
-B —Bo
so that
Botaneo wosece0 0
-1 . . -
-LBo LBO = —wocose0 0 0 (A.3-12)

eosece0 wotaneo OJ
The definition of Léo takes the form it does because the
linear rotational kinematic equation was derived from the

original form of the rotational kinematics equation, given
in Eq. (A.2-8).

Linearization of the dynamic equations require§
consideration of the aerodynamic force and moment relation-
ships. These are functions of the states, controls, and
the past history of these variables. This dependence on
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past values is caused by aerodynamic flow field effects
and their propagation delays; unsteady aerodynamic effects
can be represented as functions of the state rates. The
formal linearization of the aerodynamic forces and moments
is a lengthy but straightf.rward process which amounts to
taking the partlal derivatives of every aerodynamic force
and moment vector with respect to the states, state rates,
and controls. These partial derivatives are called
stability derivatives.

The difficulty revolves around the actual values to
be used for cach of these coefficients. This data is pro-
duced primarily by wind tunnel testing, as descriped, for
example, in Refs. 68 and 69. There is a large amount of effort
and expense involved in generating this data, so only the most
important functional relationships can be examined. This
often results in different data sets for each aircraft.

For this reason, only general terms for the perturbation
forces and moments are included in the following discussion.
appendix B contains a discussion and example of the con-
struction of force and moment stability derivative matrices
from real data. Many stability derivative matrices are
either known to be zero or are so small as to be neglected
in all cases of interest. Assuming that altitude and orien-
tation variations have negligible effect on contact foice
and moment variations, and assuming insignificant state
derivative and angular rate effects on thrust forces and
moments, the perturbation aerodynamic forces and moments are
as follows:

3F 3F,] 3F 3F 3F
_| g el 1.]°s el .. Fp| .1
MFg=lgv. | ¥p*| 1| fep* | |28 * |55, [ %Y * | T | %48
Vg dug 3u | ¥s 3

(A.3-13)
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M oM oM aM aM
i = B ave 4| B lanl | 2B pus | B atv + | 2B gl
= v, | =B T [°%B 2T % B 1| %4
-B dwp ou B dwp

(A.3-14)
KN T
_ —B -B -
- -
[ 3Gy | 9Gpg
AQB = -a—y-:-B- AXB + -B—E—- Au (A.3-16)
L -

The linear translational dynamic equation is derived
from Eq. (A 2-27) and incorporates the perturbation aero-
dynamic force expressions presented above. Note that the
state-rate stability derivative matrices enter the equation
in a different manner than the other terms; they must be
moved to the left-hand side of the dynamic equations. The
linear translational dynamic equation becomes

(1|8 1[3Fg R
“m | 3vy

ELMI wp =€ L Ovg
by

AVg +

el [
mlav. Yo |3v. | 9B (%YB
™ 1°%8 ] “B 0
[5F, ]
+-]—‘ —B + v AwI
m 3 I B0 -B
Yp
[3F 3T
L 2Bl | B ay
m | du m | du -
i u
(A.3-17)
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The linear rotational dynamic equation is derived
similarly, and the state-rate stability derivatives appear

in the same way.

The linear rotational dynamic equation is

oM oM oM 3G
-1 —B . 1 -B oI o .-1 B ~B
N I 3 2 2t Al S s | Y P | Il Il el RS2
-B { agB -B ~B
I 7~
Y1) P S O
B I B~B B~"B
_a_B‘ 0 0
M7 [aG
+I‘1 F =B +] =B Au
B || 3u ou -
L.
(A.3-18)
The four state equations (translational and rota-
tional kinematic and dynamic equations) can be written in
standard linear equation form (Eq. (A.3-3)) by using the
following state vector:
axT = [axT avT avT aul’ (A.3-19)
= -I "-B "-B "B )
The state equations then fall into the férm:
e = ] ] B -2
JgbXp = Fg Axp +Gg du (A.3-20)
where the state-rate transformation matrix is
1 0o o 0]
0 I 0 0
Jg = (A.3-21)
0 0 Jz3 Jag
0 0 J43 J44
L o
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and the three-by-three sub-matrices are
R =
33 m|dvg

34

[
]
!
=

43 B

&y
|
|
—t
1
-
1
| w
|<1IE
w |w
—

J4q = B

]
[ ]
1
—t
]
[
| |
[ 24 L3
§>II=
[l 7]
—_—

The primed state dynamics matrix is

0 Fio Fy3 0 W
- 0 Fy, 0 F,,

0 Fgp Fg3 Ty

LO 0 F,q F44-

o ¢

where the three-by-three sub-matrices are

fl
U
Mol

Fia

24 B

(A.

(A.

(A.

(A.

(A.

(A.

.3-22)

3-23)

.3-24)

.3-25)

3-26)

3-27)

3-28)

3-29)

3-30)
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Foy = H? glné Ly (A.3-31)
0 0 0
[3F 3T
1|8 1|°=B I
F..={=|=|+=|==]- (A.3-32)
33 m _agB- m [BXB} B,
ey
= |11 =Bl;s -
Fay = | T + 7 (A.3-33)
° L. ."EB - 0
oM (3G
-1 =B =B
F,, =1 B+ |=2 (A.3-34)
43 B [agB} LBXB]
F -1 M1, .ol -3l 1 (A.3-35)
44 B ||3.] BB “p ‘B .
wg 0 0
and
0 .
Gy = 0 (A.3-36)
G3
Gq

The sub-matrice
trols) are

s (of three rows and as many columns as con-

(A.3-37)

(A.3-38)

The complete state equation is produced by pre-

multiplying Eq.
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transformation matrix, giving the following result:

- = -1, -1, /
bxg = Jp Tp 8xp *+ J3°Gy Au
= Fp Axg + Gy Au . (A.3-39)

This resulting linear system is analyzed through-
out this report. It is important to note that this sys-
tem specifies the state and control pefturbations about their
nominal values. Methods of properly choosing these nominal
values are examined next.

A.3.2 Generalized Trim Conditions

An aircraft is in the trimmed condition when its

controls are set to produce equilibrium in the equations of
motion. Steady trim occurs when the aircraft is under no

inertial acceleration, i.e., when translational velocities
are constant and rotational rates are zero. The trim con-
cept can be extended to dynamic flight conditions by defin-

ing generalized trim as the condition in which control set-

tings produce constant velocities and angular rates. 1In
this case, the vehicle is not necessarily in steady equilib-
rium, due to changing roll and pitch angles.

The importance of these trim classifications lies
in the use of trimmed flight conditions as nominal trajec-
tories for linearization, since trim implies that the nomi-
nal velocities, angular rates, and controls are constant,
or, at most, slowly varying. Thus, the use of the trimmed
condition as a nominal flight condition causes the linear
equations to represent almost all of the system dynamics
at that flight condition. This can be seen by writing the
general equations for the total state rate:
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Vg = Vg + A!B (A.3-40)
0

D S | o1 -

vg = EBO + AQB (A.3-41)

If a set of nominal states and controls can be found so that

the generalized trim condition e
) .I
Vg = Wp = 0 (A.3-42)
0 0

is satisfied, then the perturbation state rates are equal
to the total state rates. This can be seen by inserting
Eq. (A.3-42) into Egs. (A.3-40) and (A.3-41).

Another desirable characteristic of using the
trimmed flight condition as a nominal for linearization is
that the total state and control trajectories over a signi-
ficant interval of time are the sums of the constant nominal
values and the linear perturbation time histories. This
relation is given as:

vg(t) = vy + byg(t) (A.3-43)

wa(t) % wi + fwl(t) (A.3-44)
0

u(t) = ug + du(t) (A.3-45)

where vp,. géo and u, are constant.
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A solution method for the generalized trim problem
can be derived by examining genera’ forms o1 the nuulincar
translational and rotational dvnamic equ-tions, which are
derived in Sect. n A.2.2 as

. I
Vg = £, (Vps ¥g» wpgs W) (A.3-46)
b = 1,0 B W) A.3-47
Yp = 1o5\¥p, g, U ° (A.3-47)

The aerodynamic forces and moments are assumed to be func-
tions of v, 9;, and u. One element of the Euler angle vec-
tor, ¥, does not appear in the equations, and altitude

is a parameter.

Two different generalized trim problems then become
possible, the first of which is the following:
e Find the values of velocity and angular
rate (vg and gé) that produce general-
ized trim (iB=_cb_é=0) for given controls

and Euler angles (u, EB)'

This problem consists of six equations (the dynamic equa-
tions) in six unanowns (the velocity and angular rates),
and therefore it can be expected to have a solution. The
controls and Euler angles are the set points that determine
the generalized trim solution, and it should be noted that
altitude also has an effect on the solution.

The second generalized trim problem can provide
the trim controls that produce specific state values:
) Find the values of the controls and
Euler angles (u and vp) that satisfy

the generalized trim conditions
(iB==Qé==O) for riven valies of the

velocity and angular rate vectors
(vp and gé).
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The existence of a2 soclution to the second problem
depends on the degrees of freedom and power of the controls.
Many aerodynamic vehicles have a four-element control vec-
tor, along with the Euler ans;les, $ and 8, this results
in a problem of six equations (the dynamic equations) in six
unknowns (throttle, elevator, aileron, rudder, pitch angle,
and roll angle).

One approach for solving either of these generalized
trim problems is to use functional minimization. This

approach, also called parametric optimization, requires all
elements of u and vg (or of vy and Qé) to be specified as given
or desired, but it ‘s not tied to any particular flight path.
In this case. Eqs. (A.3-46) and (A.3-47) are solved directly
using an iterative process, e.g., a steepest-descent,
accelerated gradient algorithm, or direct numerical search
(Ref. 70). A scalar cost function, J, measures trim error;

a quadrvatic form is appropriate for computing a norm of

the vector error:

T o= C-TQ v, * -7 o 5l
< T Yg®1ip T Xp o=

In both generalized trim problems, the trim value is

determined when J reaches a min. .

A.3.3 Body-Axis Equations

It is advantageous to express the vehicle state
equations in podyv-fixed axes. These are the axes in which
the pilot, the sensors, and the control surfaces are located.
Body axes are the only axes itn which the moment-of-inertia
matrix is constant. Aerodvnamic data collected from sting-

mounted wind tannel models or from flight test usually is
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expressed in body axes. Consequently, body axes are con-
sidered to be the basic axes in this report, and all of the
equations given so far have been in body axes.

A.3.4 Stapnility-Axis Equations

Stability axes also are bhody-fixed axes, so that
they retain the convenient characteristics mentioned above.
The axes are fixed in the body so that the x-axis is aligned
with the nominal velocity vector. Although the axes are
fixed in the body, they have different orientations at
different nominal flight conditions. Further, the pertur-
bation velocity vector is not expressed as three orthogonal
velocity perturbations but as a velocity magnituc pertur-
bation and two body-velocity orientation angles: pertur-
bation angles of attack (Aa) and sideslip (AB). This -rec-
tor is referred to here as Avy,. 1t is important to note that
stability axes are also the same as wind axes for a specific
nominal flight condition: 4o=By=0. This is the justification
for using a "W" subscript throughout this report for stability

axis variables.

Stability axes simplify certain aspects of the
linear equations. In level nominal flight, stability x-
and y-axes are horizontal and the z-axis is vertical. The
1ift and drag forces act along stability axes. Finally, it
often is true that stability axes are close to the normal
mode axes. This means that the basic modes of motion
appear as motion about or along a single axis of the sta-
bility reference frame. The frequency and damping of the
basic modes then become simple functions of the aerodynamic
stability derivatives expressed along stability axes; there-
fore aerodynamic stability devivatives expressed in the
stability-axijs frame can be used as approximate indications

of stahility or instability. For example, assuming that
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body axes coincide with principal axes, the stability-axis
rotational dynamic equations appear in part as:

I
12 1 X .
bp, = 5pVgSb i, [cosaOC18-+T; 51na0Cn8] Af+. .. (A.3-49)
sy = Lov2s0 L |cosa cy . =2 sina Cp. | 8 A.3-50
W= 3PS T ong " T sina,Cygo | AB+. .. (A.3-50)

where Appendix B details the definition of the individual
symbols. The departure parameter Cne’dyn(Section 2.2) is
recognized as an element in the yaw equation. This is sig-
nificant because these equations are derived by a simplification
of the complete equations, and it is possible that other use-
ful departure parameters can be derived from the same approach.

Since stability axes are body-fixed axes with a par-
ticular nominal orientation, it is conveﬂient to derive the
linear equ tiuns in body axes and simply rotate them to
obtain a stability-axis set. This can be done by applying
the transformation matrix, KB , to the body-axis system

matrices, F, and G as follows:

B B’
F, = K21 F_ K (A.2-51)
¥~ "By ‘B “By r€m9s

=x1 e (A.3-52)
Gy = gy Cp '
where
(1 0 0 0
0 1 0 0 (A.3-53)
K -—
BW 0 0O HWOJWO 0
ol B
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and, from Fig. 2.2-2, the wind-body transformation is

cosao cosB0 -cosa0 51n80 -sina

0
Hgo =|  sing, cosB,, 0 (A.3-54)
sinu0 cosB0 —sinao sine0 cosa,
while
0 sinao 0
Lwo = g 0 1 (A.3-55)

-cosao 4]

and Jy, is a diagonal matrix whose elements are £1.v4,VgeosBg].
These relations (which assume a0=BO=O) are used to transform
body-axis equations to stability-axis equations for further
analysis.

A.3.5 State Ordering and Dimension

The order of the states given by Eq. (A.2-30) is
the one that proceeds from considering translation befoie
rotation and kinematics before dynamics. This order does
not, however, group related states together. For example,
many aircraft demonstrate a natural mode that is primarily
composed of Au and A6 oscillations (the phugoid mode), and
it is logical to regroup the states so that apu and pg fall
next to each other.

For some reference flight conditions, a further
major division between longitudinal and lateral-directional
variables can be made. The former variables describe motion
withi,. the vehicle plane of symmetry, while the lateral-
directional variables describe motion out of the plane of
symmetry. This division is useful because it allows a
quick appraisal or the extent and nature of cross couplings
that arise in maneuvering flight.
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With this condition in mind, the ordering of states
given in Table A.3-1 is suggested for aircraft and similar
vehicles. The six longitudinal states are first, followed
by the six lateral-directional states.

TABLE A.3-1
STATE ORDERING

Body Axes Stability Axes
Axy Axy
Azt bz
AB AB
Au AV
Aq gy
Aw Ao
Av AB
Ar Ary
Ap Apy
Ad Ad
Ay Ay
Ayy Ayy

In any reduced-order approximation, this state order-
ing also is useful. The four "outermost'" states, for example,
do not affect the inner eight, but are merely integral functions
of them. Thus, AxI,
changing the basic modes of motion of the vehicle. The

Azl, AyI and Ay can be removed without

first two of the remaining eight states are the primary
states involved in the phugsid mode., while the next two
represent the primary short pericd longitudinal mode. The
four lateral-directional states often exhibit a Dutch roll
oscillatory mode and roll and spiral convergence modes.
Except in special cases, each of these modes involves most
of the lateral-directional states.
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The formation of models of order less than eight
depends on an examination of the individual problem. For
example, wher there is no coupling between lateral-direc-
tional and longitudinal modes, the eighth-order model can
be split into two independent fourth-order models with no
luoss of accuracy. If the time-span of interest is short,
it may be possible to neglect the slower modes (phugoid
mode and spiral convergence) without decreasing the accu-
racy of the results; however, as the eigenvectors of earlier
chapters show, one runs the risk of missing significant

coupling effects when '"inner eight'” states are eliminated.

A different order reduction suggests itself when
the generalized trim problem is examined. As discussed in
Section A.3.2, the goal of the generalized trim procedure
is to find a nominal flight condition with constant velocity
and angular rates. Because they do not affect the velocity
and angular rate states, X1, Y1, 23 and VY are dropped
immediately. To completely control the six desired states,
six controls are necessary, but most atmospheric flight
vehicles have less than six control effectors. Noting that
the two Euler angles, 6 and ¢, are involved primarily in the
slow modes, these two states may be regarded as parameters.
This results in a problem of four controil throttle, ele-
vator, aileron, rudder), two parameters (t,.), six states
(u,v,w,p,q,r), and six state equations (u,v,w,p,q,T) to

define trim.
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A.4 TOOLS FOR LINEAR ANALYSIS OF AIRCRAFT STABILITY
AND CONTROL

The previous sections of this chapter have developed
the linear aircraft model and demonstrated its validity along
1ighly dynamic trajectories. The use of a linear model is
desirable because the large body of theory and experience
relating to the analysis and control of linear systems then
can be applied to the departure preventicn problem. These

tools are discussed in this section.

A.4.1 Eigenvalues, Eigenvectors, and Normal Modes

The initial-condition response of a linear-time-
invariant system is composed of a linear combination of a

limited number of natural, or normal modes. Each normal

mode is characterized by its time scale, given by tne eigen-
value of that mode, and the relative involvement of each

state in that mode, indicated by the eigenvector of that

mode. In physically realizable systems, the modes are
described either by individual real eigenvalues or by pairs
of complex eigenvalues. A first-order niode exhibits either
an exponentially increasing response (positive eigenvalue)
or an exponentially decreasing response (negative eigen-
value). A complex (second-order) mode oscillates at a
frequency determined by the imaginary part of the eigen-
value within an exponential envelope determined by the real
part of the zigenvalue. Therefore, the oscillztion can

diverge, converge, or maintain constant amplitude.

As an example of the eigenvalues involved in the
normal modes of fighter aircraft, Fig. A.4-1 illustrates
th~ areas in the complex plane which contain the five modes

an. eight basic eigenvalues of a small high-performance
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High-Performance Aircraft

aircraft. Because complex eigenvalues occur in pairs of
complex conjugates, the lower half of the complex plane is
symmetric with the upper half and is not shown.

The eigenvectors indicate the relative involvement
of the aircraft states in a given mode. Each of the modes
shown in Fig. A.4-1 may involve the motion of every state,
but the following generalizations can be made for straight-
and-level.flight. The longitudinal states (A6, Au, Aq, Aw)
exhibit two second-order modes. The phugoid mode is a slow,

lightly .damped interchange of kinetic energy (speed) and
potential energy (altitude) and primarily involves A6 and
Au., The short period mode is the rapid, well-damped angular

oscillation, and is exhibited primarily by Agq and Aw.
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The lateral-directional modes usually consist of a
second-order and two first-order modes. The former is called
the Duteéh roll mode and is a fast, poorly damped yaw oscilla-
tion about the stability z-axis. The roll convergence mode

is a fast, stable mode, and it represents the aircraft response

(generally about the stability x-axis) to a roll moment.
Due to the angle between body and stability axes, the Dutch

roll mode and the roll convergence modes appear in the three

states Av, Ar, and Ap. The spiral mode is slow and frequently

unstable. An unstable spiral mode is important in a piloted
aircraft only if the time constant is so short that the

pilot has difficulty keeping the wings level.

These mode shapes change considerably as the flight
condition varies from straight-and-level flight. Asymmetric
flight conditions result in coupled longitudinal/lateral-
directional modes, and angular rates cause large changes in
the eigenvalues. In certain cases, modes combine: the
roll and spiral modes can form a roll-spiral oscillation,

for example.

The eigenvalues of the outer four states (AxI, AyI,
and Ay) are zero, i.e., these states have no effect on the
other variables and are pure integrations of the other
state variables. As a consequence, control-loop closures
have no direct effect on these modes unless the outer vari-

ables are fed back directly.

The eigenvalues are the roots of the charucteristic

equation of the system dynamics matrix, F,

AT - F] =0 (A.4-1)

where I is the identity matrix of the same order as the
system matrix, and » is a scalar which must equal an eigen-

value for Eq. (A.4-1) to be satisfied.
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As shown in Ref. 71, there is a set of vectors
associated with the eigenvalues which have special. proper-

ties. The eigenvectors, z are linear combinations of the

25>
elements of the state vector and are solutions to the equa-

tions
[in - F]gi =0 (A.4-2)

As in the case of eigenvalues, the eigenvectors of a second-
order mode appear as complex conjugate pairs. The eigen-
vectors contain the same information about the normal modes
that is given by the time vectors of classical aircraft sta-
bility analysis (Ref. 65).

The modal matrix is the matrix of eigenvectors

arranged columnwise. The inverse of this matrix transforms
the state vector into normal mode space, in which each ele-
ment of the vector, Ay, represents a normal mode of the sys-

tem:
Ay = M © Ax (A.4-3)

(Instead of the two complex-conjugate eigenvectors of a
second-order mode, it may be useful to use two real vectors,
one composed of the eigenvector real part and one the imag-

inary part.)

The linear equation of motion, Eq. (A.3-3) can be

transformed as well:

1

1rm oy + M 16 au (A.4-4)

Ay = M°
The normal-mode system matrix, M—lFM, is composed of first-
cr second-order diagonal blocks containing the system eigen-
values, and the normal mode input matrix, M'lG, indicates
which inputs affect which normal modes. This alternate form
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of the state equation is useful because it demonstrates a
method of analyzing normal mode excitation. The excitation
due to the state initial condition can be calculated from
Eq. (A.4-3), while the excitation due to control inputs is
given by the normal mode input matrix, u-lg.

This section has discussed eigenvalue and eigen-
vector concepts. Examples of the application of these
analytical tools to the analysis of linearized aircraft
models are contained in Sections 2.4 and 2.5.

A.4.2 Controllability

In a multi-input, multi-output system, certain
normal modes may be unaffected by the system controls with-
out this being apparent from the system dynamics and input
matrices. This can not occur in an nth-order linear-time-
invariant system whose controllability test matrix, T, has
full rank:

r = [G: FG| ... Fn'lG] (A.4-5)
' ] 1

The presence of controlliability is necessary for
the construction of a complete system controller, and this
property almost always exists in physical systems of inter-
est. (Controllability tests show that the high-performaince
fighter investigated in this report is controllable through-
out the range of flight conditions.)

Of more interest is the investigation of control
effectiveness throughout the flight regime. The difficulty
is in devising a simple measure of control effectiveness,
but this can be overcome, to some extent, by using the
normal mode control input matrix, M'IG, which was intro-
duced above. The rows of this matrix indicate the relative
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importance of the aircraft's controls in affecting each
of the normal modes.

A.4.3 Transfer Functions

Specific input-output relationships in linear-time-
invariant dynamic systems can be described by transfer func-
tions, which are typically given as ratios of polynomials in
the Laplace operator, s. The Laplace transform of the or-
dinary differential equation of motion (Eq. (A.3-3)) is

(sI-F) Ax(s) = G Au(s) (A.4-6)

where I, F, and G have been defined, and Ax(s) and Au(s)
are Laplace transforms of the state and control vectors,
Ax(t) and Au(t}). The input, Au(s), and the output, Ax(s),
are related by a transfer function matrix, H(s), which is
obtained when Eq. (A.4-6) is pre-multiplied by the inverse
of (8l-F):

tx(s8) = (sI-F)"1G Au(s)
(A.4-7)
= H(s) bdu(s)

where

1

H(s) = (sI-F) G (A.4-8)

Any scalar transfer function of interest (for example, the
eftect of the ith control on the jth motion variable), can
be obtained from Eq. (A.4-8) by evaluating two determinants
derived from the matrices of Eq. (A.4-6) (Ref. 72),

Ax,(8) lsI-F+g1J] - |sI-F|

O] (A.4-9)
Bu,(s) |sI-F|
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where gij is an n by n matrix whose elements are zero, except
for the Jth column, which conzains the ith column of the G
matrix. This transfer function is a ratio of polynomials in
s, and the numerator and denominator can be factored to iden-
tify the poles, p, and zeros, z, which describe the relation-
ship between Auj(s) and 8x;(s):

ij(s) KI(s-zl)(s-zz)....(s-zm)

- (A.4-10a)
Au, (s) (s=py)(s-pg)....(s-py)

Alternatively, dividing by the individual poles and zeros,
Eq. (A.4-10a) becomes

S EE SABEER
ax, (s) F'( zq VAR Zm (A.4-10b)

RN

The poles of the transfer function are the roots of the sys-

tem's characteristic equation, i.e., they are the system's
eigenvalues, and they are identical for all transfer func-
tions of the system described by F. The zeros depend ¢n G

as well as F; therefore, they vary from one transfer function
to the next. The transfer function gain, KF’ is the steady-
state value of the transfer function after all transients

damp out, assuming that all transients are stable. The trans-

fer function gain, K is (for most aircraft transfer func-

I H
tions) the initial state rate response to a contrcl step.

The initial value gain, KI' is important because it

determines the initial slope of a given state variable's
step response. This can be seen by applying the initial
value theorem (Ref. 11) to the state variable's transform,
which states that
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lim x(t) = 1lim s x(s)
(A.4-11)
t + 0 S + ®

if the limit exists. The Laplace transform for the pertur-
bation state, Axi, given a unity step input in control,
Auj, is given as

bx, (s) (1) ) (A.4-12)

ax;(s) = Auj(s) S
Since there are more poles than zeros in the transfer func-
tions of interest, the initial value of Axi(t) is zero.

Physically, this is an indication that the vehicle states

do not change instantaneously in response to a control in-
put. The lowest order non-zero state derivative is equal

to the excess of poles over zeros. For most aircraft trans-
fer functions of interest, the excess 1s one, and

Ax.(s) s Axi(s)

. - - 1 S _ -
ij(s) = s ij(s) = ZEETET s = ZGST§7 (A.4-13)

This leads to the calculation of the initial value of the
state derivative response to a unity step input as

= 1im 2%i(8)

Aii(t=0) = K
g+ Auj(s)

I (A.4-14)

Coupled aircraft transfer functions typ :ally have
seven zeros and eight non-zero poles, so KI and KF are re-
lated as follows:

- KF('pl)('pz) (-rs)
I (-2 )(-25) ... (-2

(A.4-15)

163

o et e P



A comparison of the signs of KI and KF' which are
related by the signs of the poles and zeros, as indicated by
Eq. (A.4-15), is important because these signs give an indi-
cation of the expected transient response. If the transfer
function is stable and minimum phase, the signs of KI and
KF are the same. The resuiting response is sim“/lar to the
solid line in Fig. 2.5-1. A nonminimum-phase tero causes
KI and KF to have opposite signs, and the resulting response
resembles one of the das*ed lines in Fig. 2.5-1. In these
responses, the initial response direction is away from the
desired final value,

The transfer furnction has been a fundamental tool
of control system design in the past, and, although linear-
optimal control theory serves that purpose in this report
(Chapter 4), transfer functions can be valuable for under-
standing details of the aircraft's dynamics. For example,
nonminimum-phase zeros and sign changes in KI can degrade
handling qualities (Section 2.2). When poles and zeros
are nearly equal, there is a cancelling effect which tends
to remove the associated normal mode from the cutput vari-
able's response to the given input. Conversely, feedback
paths between the transfer function's output anc input have
negligible effect on that normal mode. In other words, the
transfer function provides the information regarding the
quality of coatrollability which was missing in Eq. (A.4-5).
These capabilities are put to use in Chapter 2.

A.4.4 OQptimal Control Theory

A regulator is a feedback control law which is
designed to maintain asymptotically stable output of a
dynamic system, i.e., it bounds the fluctuations in the
output, and it assures that the output goes to zero as time
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increases. An optimal regulator minimizes a cos: (or

penalty) functional of the output and control in stabilizing
the dynamic system. A linear-optimal regulator minimizes /

a particular cost function -- the time integral of quadratic
tfunctions of the output and control -- for a linear dynamic
system, and it takes the form of Eq. (4.1-1) (Ref. 80). A
linear-optimal regulator can be designed for an aircraft
near, at, or beyond its open-loop departure boundary. This
dbsign indicates the control loops which must be closed
(either automatically or by the pilot) to prevent departure,
providing asymptotic stability and minimizing a quadratic
cost functional of the output and control.

The basic design objective for the linear-optimal
regulator is to define the feedback contr«l law which mini-
mizes a quadratic cost functional, J, of the verturbation
output vector, Ay(t), and the perturbation contiol vector,
du(t):

J = _[) [AXT(t) Qby(t) + aul(t) RAu(t) | dt (A.4-16)
-

The control vector contains all available aircraft control
displacements ~- in this case, throttle setting (AGT), ele-
vator (46p), aileron (Aéa), and rudder (AGr). The output
vector represents the measured aircraft variakbles and car be
formulated as a linear combination of the aircraft's pertur-
bation states, Ax(t), state rates, Ai(t), and controls, Au(t):
the present development uses the simplifying assumption,

Ay(t) = Axz(t), where

A§T = [Ae Au &5 Aw Av Ar Ap Aa] (A.4-17)

. The state-weighting matrix is nonnegative-definite and
symmetric,




Q= (A.4-18)

and the control-weighting matrix is positive-definite and

symmetric:
B r e o . n
rJh1 J C
O r ~ L) . . O
E = 22 (A.4-19)
L J 0 3 ] . rrnm-‘

Eauatio (A.4-15) can be written as

_ (" 2 e 2 2
J ~[. [qllel(t) + + qnnAxn(t) + rllAul(t) +
+ . ba2(t) | at (A.4-20)
mm m )

and the cost functional is seen to be a weighted sum of the
integrated-square values of :he perturbation state and control.
In the present case, minimizing the weighted suvm of integrated-

square values is eguivalent 1o minimizing the weighted sum of

ront-mean-square (rms; values of the state and control.

Equation (A.4-20) provides a means of trading off
the ‘cost ot output errors against the cost of control, and
it is simply this: choose euach we:ghting coefficient in Q
and R as the inverse of the maximum allowable mean-square

value of the weighted variable, i.e.,
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i 1 ton (A.4-21)

1/Aug , 3

JJ Jmax

o
]

ltom (A.4-22)

This normalizes each term in Eq. (A.4-20), s.. thati 1rs contri-
bution to the integrand is unity when the variable eguals its
maximum value. The elements of R are specified by the con-
trol authority which can be assigned to the DPSAS. For

example, if 10 deg of elevator perturbation can be assigned

to departure prevention, the corresponding elemert of R is
1/(10)2 = 0.01. If there is prior information regarding
allowable state perturbations (as in a tracking rasx), the

elements of Q are determined similarly.

An alternate approach is to use the elements of Q

and R as design parameters which can be varied until desirable

transient response or eigenvalues are achieved. 1In such case,
the equivalence of Q elements to allowable mean-square values
is not lost, and it is possible to gain insight regarding the
correspondence of rms-output errors and classical figures of
merit in each particular case.

The minimization of J must be accomplished subject
to the dynamic constraint provided by the linear equation
of motion,

AX(t) = FAX(t) + GAu(t) (A.4-23)

(It is assumed that F and G form a controllahle nair.) The
method of finding the control which minimizes J subject to
Eq. (A.4-23) is derived in numerous texts (e.g., Refs. 60 to
62). In the special case of quadratic cost and linear sys-
tem dynamics, the control solution is a linear feedback law
(Eq. (4.1-1)). The gain matrix of this control law is

167



i

K = R 1gTp (A.4-24)

where the symmetric matrix, P, is the steady-state solution
of the matrix Riccati equation

T -1.T

P=-PF ~ FP+ PGR G P -~ Q (A.4-25)

il

In other words, the DPSAS gain matrix is easily
found by two mat. ix multiplications once P is found

(Eq. (A.4-24), but the solution for P (Eq. (A.4-25)) appears
formidable. There are, however, four recognized methods

for steady-state solution of Eq. (A.4-13)), all of which
require digital computation (Ref. 60): these are direct
integration of Eq. (A.4-25), the Newton-Raphson method, the
Kalman-Englar method, and the diagonalization/eigenvalue
method. The choice between these methods must be based on
grounds of numerical convenience and efficiency.

The Kalman-Englar method (Ref. 73) has been used to
generate the results which follow in later sections. In
this technique, P is propagated to steady state using the
recursive equation

-1
Pusr = [921'*922pk] [911‘+012Pk] ' (A.4-26)

The matrices Oll’ 612, 621, and 922 are tne appropriate

(n *x n) sub~-matrices of

o(at) = e 28t (A.4-27)
where
ﬁ -
(F -cr~ 1T
Z = (A.4-2;
R ?
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and the propagation interval, At, is small compared to the

natural periods of the aircraft motion.

The DPSAS design procedure is summarized and shown

to be a straightforward technique once the appropriate

general-purpose computer routines are programmed:

° Define control authority available
to the DPSAS, thus specifying R.

“ Define allowable state perturba-
tions, thereby specifying Q.

° For the aircraft dynamics specified
by the stability and control matrices,
F and G, compute the feedback gain
matrix, K, using Eq. (A.4-26), (A.4-27),
(A.4-26), and (A.4-24).

] The control law for the DPSAS is given
by Eq. (4.1-1), using the gain matrix
calculated in the previous step.

The resulting DPSAS stabilizes the aircraft without using

mroe control authority than that specificd by R for state

perturbations defined by Q.

A.4.5 Gain Sct.eduling Procedure

Means and Siandard Deviations - Two features which

suggest that a gain be held constant are its standard devi-

ation and mean value. Certain gains do not exhibit wide

variations as the flight conditions change. This can be

determined by constructing a table of means and standard

deviations for the gains, as illustrated by Table A.4-1.

In the table, Gain 6 displays a low standard deviation and

a large mean value. This indicates that the gain should

probably not be scheduled, i.e.,
used at all flight conditions.

that its mean value can be
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Another feature of each gain is its relative mae-
nitude compared to other gains of a similar class. Gain 4
is small compared to Gain 6 and also exhibits a wide varia-
tion in magnitud~; thus it may be desirable to schedule
Gain 4, if its variation with flight condition is coherent,
or set it to zero. Simulations should be done to fully

TABLE A.4-1
EXAMPLE OF MEAN-STANDARD DZVIATION TABLE

Standard §S.D. Per Cent

Mean Deviation of Mean

Gain 4 -.00598 .0269 449.0

Gain 5 -,1013 .032 31.7

Gain 6 2.55 .046 1.82
ete.

determine the zeroed gains' effects on controlling the air-
crafv. Gain 5 is a logical candidate for scheduling. The
gain magnitude is not negligible, and it displays enough
variation to warrant scheduling.

Correlation Between Gains and Flight Veriables -

The aircraft dynamic model varies in a complex but deter-
ministic way with flight conditions. If the closed-loop
response of the aircraft is maintained essentially invariant
by automatic control, it is reasonable to assume that the
neceussary control gains also vary in a ccmplex but deter-
ministic way with flight conditions; hence the gains and
flight conditions should be correlated,

The search for gain/flight variable dependencies
begirs by determining correlation coefficients between the
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geins and all available flight variables. One method of
determining the correlation coefficient between a set of
gains (dependent variables), ki' and a flight variable
(independent variable), m, is given by the following:

I
(k,-kK)(m,-m)
[covik,m)| _ ;g; . .
Ptwem = ( -12)2/I (m, -m)2
i ‘ 2: i)
i=1 i=1

In Eq. (A.4-2¢), I is the number of flight conditions for

p(k,m) = (A.4-29)

which the gains are known, ki is the value of the gain
observed at flight ,ocint i, and my is the value of the
flight variable at flight point i. The variable kK is the

mean value of the gain, given by
I
= 1
k=1 ;E; k, (A.4-30)
1=

and m is the mean value of the flight variable. The closer
the magnitude of p is to one, the better the correlation
between the gain and the flight variable. Independent
variables which can be considered for gain scheduling

include indicated airspeed (IAS), body-axis velocities
(u,v,w) angles of attack and sideslip {a,R), angular rates
(p.q,r), and control trim positions. These variables can

be inverted, squared, and so on, in the search for high corre-
lation. An example of a correlation coefficient taule is
shown in Table A.4-2. Ti..e circled values are the high corre-
lation coefficients betireen gains and independent variable

functions.
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TABLE A.4-2
EXAMPLE OF CORRELATION COEFFICIENTS TABLE

IAS IAS2  p q r _...etc.

a a2 l/a
ain 1 |.838 .297 (912) .804 .018 .0359
79 .743 .16

Gain 2 |.8 8 .745 .541 (. 890) .028 .245

Gain 3 |.672 .786 .069 .782 @ .724 .447 .339

et;c.

Curve Fitting - The third step in the gain-scheduling

procedure is to construct a smooth relationship between the
gains which are to be scheduled and the most highly corre-
lated flight variables. Multiple regression

+ b.m, + bym, + ... + b_m (A.4-31)

k = Dby + bymy + bymy n®n

and polynomial regression,

k=b, + blm + b m2 + ... +bm?

0 1 ¥ bomy a™i (A.4-32)

can be used. Equation (A.4-31), the multiple regression,
uses n different independent variables, while Eq. (A.4-32),
the polynomial regression, uses powers of the highest cor-

related independent flight variable, m to estimate the

i ’
gain, k. A method for determining the regression coeffi-

cients, b is shown next.

i ?
A multiple regression analysis determines the

n in Eq. (A.4-31) so
that the sum of the squared error between the regression

regression coefficients bo, bl""’b

estimate, ﬁ, and the true value of k is minimized. For
I flight conditions, the function to be minimized is

—-—
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I
I = D (x,-k.)2 (A.4-33)
i=1 7

To minimize J, set

.?i..:?—".l—z:...iJ—:O (A.4—34)
] 0 ] 1 an

Then the expression for the regression coefficients becomes

Ab=C (A.4-35)
or

-1

b=A (A.4-36)

1C>

where A and C are defined as in the least-squares formulas

of Ref., 63. These are the values of bi which minimize the
squared error.

To determine just how good the bi values are, the
correlation coefficient for the multiple regression fit can
be found, as in Eq. (A.4-"9):

(A.4-37)

The closer p is to one,

the better the fit of the multiple

regression model.

Whep using » multiple regression, the

more independent variables chosen,

p will be, until n=1 and p=1.

the higher the value of



An alternate way of estimating gain values is to
use only one of the flight variables in a polynomial regres-
sion. An ntb_order polynomial regression analysis deter-

0 bl,...,bn in Eq.
(A.4-32) so that the sum of the squared error between the
regression estimate, ﬁ,of Eq. (A.4-31) and the true value
of k is minimum. In this case, there is only one kind of
independent varia.le, m; , for each gain value, but it is

mines the regression coefficients, b

raised to various powers, i.e., my=m,, m2==m§, until adequate

correlation is achieved.

The analysis for the polynomial regression pro-
ceeds as in the multiple regression, starting at Eq.
(A.4-33). The polynomial regression can be considered a

special case of the multiple regression.

A.4.6 Program ALPHA

The construction of the complete linear equations
of motion, *heir analysis, and the design of feedback con-
trollers has been programmed in ALPHA--Analysis Program
for High Angle-of-Attack Stability and Control. Figure
4.4-2 illustrates the structure of this program. Input
data consists of aircraft inertial and aerodynamic char-
acteristics. The aerodynamic data can be entered as con-
ventional stability derivatives, dimensionless derivatives,
or full tables of nonliaear force and moment characteristics.
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L L

Figure A.4-2 ALPHA - Analysis Program for High
Angle-of-Attack Stability and Control

The program executes a three-step procedure. The
first step consists of steady or generalized trim calcula-
tion, 1f desired, and the construction of the complete body-
axis system dynamics and control input matrices. During
the second step, the linear system is modified, if required,
to include any axis transformation, order reduction,or fixed
stability augmentation loop closure. The final step consists
of the analysis of the resulting system. Eigenvalues, eigen-
vectors, transfer functions, linear-optimal stability aug-
mentation systems, and time histories can be calculated and

plotted.
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The executive structure of ALPHA includes logic
to modify the dynamic model on succeeding passes through
the program and to vary the analysis type as ceitain param-
eters are varied over a given range of interest. Program
ALPHA provides an efficient tool for the thorough analysis
of aircraft high angle-of-attack stability and control.
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APPENDIX B
AIRCRAFT AERODYNAMIC MODEL

The reference aircraft is a small, supersonic fighter
type designed for air superiori‘*y missions. Mass, dimensional,
and inertial characteristics are listed in Table B-1. The
aerodynamic data set is a composite of sub-scale wind tunnel
measurements for two configurations of the reference aircraft;
hence, the numerical results presented here do not represent
a specific aircraft in detail.

TABLE B-1
CHARACTERISTICS OF THE REFERENCE AIRCRAFT

Mass, kg 6,124.
Ix, kg-m2 7,186.
Iy, kg-m2 57,350.
1z, kg-m2 63,450.
Ixz, kg-m2 -149.
Reference Area, m2 17.30
Mean Aerodynamic Chord, m(¢) 2.46
Wing Span, m(b) —
Length, m .73
Reference Center of Gravity (c.g.) 0.25c
Flight c.g. 0.17c:
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The control variables are elevator (or horicontal
tail, Gh), leading/trailing edge flaps (Gf), ailerons (Ga),
rudder (Gr), speed brake (GSB),and ‘irust se.ting (GT).

The ranges of these variables are listed in Table B-2.

TABLE B-2
CONTROL VARIABLE RANGES

Gh =20 to +5 deg
Gf 0 to 190 percent
Ga -60 to +60 deg
Gr -30 to +30 deg
GSB 0 to 45 deg
6T 0 to 100 percent

The aerodynamics of the aircraft are represented
by 45 coe "icients which are functions of angle of attack,
sideslip angle, elevator deflection, and flap setting.
Using simpliried conventional notation, the 6 tctal coeffi-
cients are described as follows:

CXT= Cx(a.B)+ACX(a,B,5f)+Acx(a,dsB)-. ACX(a.éf,Gh)
+ 59 Cx (o) (B-1)
q
CYT= CYO(a’Gf)+ACY(a,B)+ACY(Q’B,6f)+ACY(G,6f'6a)
b T :
* My(a,8.) * 57 LCYr(a)r-+Cyp(a)p-+CYé(a)B]
(B-2)
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CZT = Cz(a.B) +ACZ(a,8,6f, +ACZ(a,cSSB) +ACZ(QL,(Sl 6h)
+ 5% Cy (o) (B-5)
q
(\lT = Clo(a'éf)+C1(a'8)+AC1(a'B’6f)+AC1(Q’6f’61)
~ b p
+Aul(a,6r)-+§v [Cl (a)r+C1 (a)p'+C1.(a)B]
T p 8
(B-4)
CmT = Cm0+cm(a.ﬂ)+ CZ’I‘(AX) +8C (0, B8,8:) +AC (u,84,8,)
§9 -
+ACm(a,GSB)+2V Cmq(a) (B-5)
= N 7y €
CnT = Cno(a,éf)~+Cn(u,B) ACYT(Ah) 5 + ACn(u.B,df)
+ACn(a,6f,5a)-+ACn(a,6r)
+ 2 lc (a)r+C. (a)p+C. (a)B (B-6)
2V n n ! ne
r P 8

The first step in finding the individual terms of
the perturbat:.* forces and moments, Egs. (A.3-13) to (A.3-16),
is to evaluate the derivatives of the fnrce and moment co-
efficients with respect to the nondimensic.al states at the
nominal flight condition. This results in nondimengional

stability derivatives, such as the following:



T~ e~

3Cxy § qu 1 3(V/Vy)

X T 3@y T 1" %% CXq(“o)J 3Cu/ V)

+ +

3B 9B

.

* 3o oa
3ACy (a6 ) 3ACy(apn, 8¢, , O£n)
+ X* 0 sB ', X 70 n 0’
aa da
. qu acmg(ao) Yo (B-7)
2V0 aa 3(u/VO)
o S (B-8)

)

Many of these derivatives contain the partial deriva-
tives of the nondimensional wind-axis translational velocities
(V/VO, B, o) with respect to the nondimensional body-axis
translational velocities (u/VO, v/VO, w/VO). This matrix of
derivatives, evaluated at the -ominal flight condition, is

cos a, cos B sin B gin a, cos B
3(V/Vg, 8, 0) 0o -0 ° o 9

= | =cos aq4 sin BO cos 50 -sin a4 sin 50

T
3(a/Va, V/Va, W/V)
0 0 0 -sin ao/cos so 0 cos ao/cos BO

Vor %0 Bo

B-9
v/ ( )
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The dimensional stability derivatives are formed
by taking the derivatives of the dimensional aerodynamic
forces and moments with respect to the dimensional state

variables. These dimensional derivatives contain the non-
X X

g‘ dimensional derivativas; TN and ¥ are examples of these
7 derivatives:
.
%‘
5 3Fy
: . _ 9 2
3u  3u [:gpv S CXT]
4
g 9P
= pouos CXT ao, BO’ 6f()s 6]‘10’ <SSBO; 2vo
+ ipoVOS Cxu R (B-10)
3Fx
= O 2
g 3q [éOV S CXT]
‘ = 2¢ —é—
! = onvob CXqZVO (B-11)
The complete dimensional stability derivative
matrices are
T i T
u,C + &V C v,C + 3V C w.C., + 3v C
OXO OXu OXO 0 v 0)\0 0 -
o c, +4 2 }
L — = p . Siu + 4V C v.C, + 3V _C w.C + 3V C
ivg 0> | "oy, oY, 0¥, 0Y, "0, oY,
u,C + 3V C v,.C + 3V C w.C, + &v C
é LOZO '.')Zu 0.‘2o OZv 0;.0 °sz
% (B-12)
£
¥,
;?:I:v.
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T ——
[ bC e bC
X
p X X
Po,
30 Y &
p q ¥
bC cC bC
Z Z
L p q z
"C c c
Xst  Xsn  Xsa
C c o
Ysr  Ysn Yea
c c c
| Zer Zen g
cC bC cC
Xy X, X,
Pog | 5e bC cc
] [+
3 Y Y, Y,
LCCZ' e, €€
u v W_
vPc, TlCy,  bC
P Q
°0 2 -2 2
=5 | vy cg. bC
b q
b2C s v2e
2. z.
L P q

(B-13)

(B-14)

(B-15)

(B-16)
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.

SR B PN SRR ] T

-

u,bC
0 10

+ 4V.bC
0 Zl.u

v.bC
0 10 v (1]

u.cC_ + #vecC v.cC_ + 3vV.cC wcC +3veC
0 m, 0 m, 0 m, 0 m, o” ‘my 0 m
ubC_ + V. bC v.bC + 3V.bC wbC + 3V.bC
L 0 n, 0 nu (1] n, 0 n, 0 no 0 n
(B-17)
b201 bec, b2C1 ]
q p o
VoS | bec e beC (B-18)
m m
q T
b2C bec b2C
n n n
| q T
bC bC bC bC, ]|
lr Ien lsa 15y
cC cC o (B-19)
Msh Mo Mor
bC bC bC bC
Bgr Psh Nsa Dsr
. -
beC, vc, bac, |
a v w
s | g2 vec 2 (B-20)
m. m. m.
u v w
- 2 -
beC b°C beC,
i a iy W]
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b3, welc; vl ]
P q * /
M P - _
—Bla 9% |p%%. 3¢ e (B-21)
o I 8 P m M.

323 q -

1:3cn bEzcn t:3cn

L p 4 o

These stability derivative matrices are used in Egqs. (A.3-13)

to (A.3-16) to determine the perturbation forces and moments,
which themselves determine the aerodynamic terms in the linear
perturbation equations of motion.
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